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Abstract
Background . At present, the prognostic prediction in advanced oral cavity squamous cell carcinoma (OCSCC) is 
based on the tumor-node-metastasis (TNM) staging system, and the most used imaging modality in these patients 
is magnetic resonance image (MRI). With the aim to improve the prediction, we developed an MRI-based radiomic 
signature as a prognostic marker for overall survival (OS) in OCSCC patients and compared it with published gene 
expression signatures for prognosis of OS in head and neck cancer patients, replicated herein on our OCSCC dataset.

Methods For each patient, 1072 radiomic features were extracted from T1 and T2-weighted MRI (T1w and T2w). 
Features selection was performed, and an optimal set of five of them was used to fit a Cox proportional hazard 
regression model for OS. The radiomic signature was developed on a multi-centric locally advanced OCSCC 
retrospective dataset (n = 123) and validated on a prospective cohort (n = 108).

Results The performance of the signature was evaluated in terms of C-index (0.68 (IQR 0.66–0.70)), hazard ratio (HR 
2.64 (95% CI 1.62–4.31)), and high/low risk group stratification (log-rank p < 0.001, Kaplan-Meier curves). When tested 
on a multi-centric prospective cohort (n = 108), the signature had a C-index of 0.62 (IQR 0.58–0.64) and outperformed 
the clinical and pathologic TNM stage and six out of seven gene expression prognostic signatures. In addition, the 
significant difference of the radiomic signature between stages III and IVa/b in patients receiving surgery suggests a 
potential association of MRI features with the pathologic stage.

Conclusions Overall, the present study suggests that MRI signatures, containing non-invasive and cost-effective 
remarkable information, could be exploited as prognostic tools.
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Background
Oral cavity squamous cell carcinomas (OCSCCs), includ-
ing tongue cancers, are the most common malignancies 
of the oral cavity, accounting for approximately half of all 
head and neck squamous cell carcinomas (HNSCCs) [1].

The treatment mainstay for loco-regionally advanced 
(i.e., clinical tumor-node-metastasis (cTNM) stage III/
IVa-b according to the 8th edition of the AJCC/UICC 
staging system) OCSCC is surgery followed by adju-
vant radiation, plus concomitant chemotherapy in case 
of adverse pathologic factors (i.e., residual tumor after 
resection and/or extracapsular spread to regional lymph 
nodes). In this scenario, the strongest prognostic factor 
currently available is pathologic tumor-node (pTNM) 
metastasis stage.

However, the pTNM is available only after performing 
surgery, and at diagnosis no robust baseline prognos-
tic factors are available, with the only exception of the 
cTNM, that is obtained through clinical and radiological 
assessments. In this setting, magnetic resonance imaging 
(MRI) provides a high-quality resolution in determining 
soft tissue infiltration, so it is one of the most relevant 
tools to guide surgical planning. Nevertheless, so far 
images per se have not been used in the clinical prac-
tice for prognostic purposes, apart from determining the 
cTNM.

Thus, additional biomarkers are needed to better strat-
ify patients, refine the stage-based clinical decision and 
lead to more personalized therapies. In this context, high 
throughput “omics” technologies have recently gained 
increasing interest for the identification of prognostic 
factors [2]. Among those, genomics and radiomics are 
the ones that have been more extensively investigated 
as far as the development of prognostic models is con-
cerned [3–8].

Starting from early 2000, omics techniques including 
different comprehensive analyses on gene expression 
(transcriptomics), proteins and metabolites, were applied 
to identify biomarkers (see glossary in a very recent 
radiomic review [9]). In a review considering publica-
tions up to 2019 about transcriptomics and epigenom-
ics in HNSCC, we reported 33 studies analyzing gene 
expression and disclosing biological and/or prognostic 
roles in the disease [10]. Thereafter, thanks to the avail-
ability of data from The Cancer Genome Atlas [11], gene 
expression signatures have been generated including all 
HNSCC anatomical subsites or specifically OCSCC [10, 
12, 13].

Radiomics, namely the extraction and mining of 
quantitative features from radiological imaging, has the 

potential to provide non-invasive prognostic biomarkers. 
To date, several studies applied radiomics to characterize 
tumors, predict pathological features and predict clinical 
outcomes in HNSCC patients, as extensively reviewed 
in [14–16]. Most of the radiomic studies focusing on 
prognosis of overall survival (OS) in HNSCC patients 
were based on computer tomography or positron emis-
sion tomography [6, 7, 17–31], while only few prognostic 
models with features extracted from MRI were devel-
oped [32–42]. In particular, to the best of the authors’ 
knowledge, only three studies [32, 34, 42] developed an 
MRI-radiomic signature for prognosis of OS specific for 
OCSCC patients. Few other MRI-based radiomic studies 
focused on oral cavity cancer were proposed to predict 
tumor grading [43], pathological differentiation [44] and 
extracapsular nodal spread [45]. In this scenario, given 
the high heterogeneity of HNSCC patients [46] and the 
need for more personalized treatments, the development 
of MRI-based radiomic signature specific for OCSCC 
patients is fundamental.

To this aim we exploited our recently obtained database 
BD2Decide [47] that could enable linking together rigor-
ously annotated patient-specific multiparameter clinical, 
pathologic, demographic, transcriptomics and radiomics 
data from the currently largest cohort of patients with 
locoregionally advanced HNSCC.

The purpose of this study was to develop a prognostic 
MRI-based radiomic signature from the retrospective 
OCSCC cohort, and to test it on the prospective one. 
Finally, the prognostic effect of the MRI-based radiomic 
model was compared to conventional prognostic metrics 
(cTNM and pTNM) and to some published gene expres-
sion prognostic signatures [48–54].

Materials and methods
Analyzed dataset
A subset of the BD2Decide project (NCT02832102) 
patients with positive pathologic diagnosis of OCSCC 
and loco-regionally advanced disease (cTNM III, IVa or 
IVb according to the 8th edition of AJCC/UICC) treated 
with curative intent [47] was used for this study. The 
protocols were approved by the Ethical Committees of 
the participating centers, and data acquisition followed 
the General Data Protection Regulation of the EU. All 
patients signed the informed consent. The inclusion cri-
teria of the study were the following: (i) availability of 
T1-weighted (T1w) and T2-weighted (T2w) MR image 
sequence and (ii) images acquired with 1.5 T scanner 
(Fig.  1). Images from the selected patients were col-
lected from four different clinical centers: the Fondazione 
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IRCCS Istituto Nazionale dei Tumori of Milan, Italy; 
the Azienda Ospedaliero Universitaria di Parma, Italy; 
the Spedali Civili di Brescia, Italy; the Amsterdam VU 
Medisch Centrum Medical Center, the Netherlands.

Clinical endpoint
The clinical endpoint analyzed in this study was OS, 
defined as the time between the primary tumor diagno-
sis and the day of death or last follow-up. In details, OS 
times were calculated in months from the date of diagno-
sis to the date of death of any cause (event), and censored 

at the date of last follow-up for patients that were still 
alive.

MRI image acquisition
For each patient T1w and T2w MRI images were acquired 
using scanners with a field strength of 1.5 T. The T1w and 
T2w images were acquired using a turbo spin-echo pulse 
sequence. Other image acquisition parameters, such as 
time of repetition, time of echo, pixel spacing, slice thick-
ness, were not standardized. Table  1 gives an overview 

Fig. 1 CONSORT flow diagram
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of the image acquisition parameters used to acquire the 
images in the study.

Image segmentation
The gross tumor volume was segmented at the clinical 
centers using a semi-automatic segmentation software 
based on coupled shape modeling [55]. The segmenta-
tion of the region of interest (ROI), corresponding to the 
primary tumor, was performed manually slice by slice 
by expert radiologists (one for each center) dedicated to 
head and neck cancers. The tumor boundary was delin-
eated by considering T2w sequence as reference, and 
checked and corrected based on the T1w sequence. An 
example of segmented images is displayed in Fig. 2.

Image preprocessing
Image preprocessing was applied to the MRI images to 
reduce all the imaging-related sources of variability. Spe-
cifically, four steps of image preprocessing were applied 
[56]: (i) a 3D Gaussian filter with a 3 × 3 × 3 voxel kernel 
and σ = 0.5 was used to denoise the images; (ii) the N4ITK 
algorithm [57] was used for the correction of intensity 
non-uniformities due to local variations of the mag-
netic field; (iii) intensity standardization was performed 
using Z-score to ensure that each MRI image had similar 

ranges of signals; (iv) voxel size resampling to an iso-
tropic resolution of 2 mm was performed with B-spline 
interpolation [58].

Radiomic features extraction
The extraction of radiomic features was performed using 
Pyradiomics 2.2.0 (open-source, available at https://
github.com/Radiomics/pyradiomics and run on Python) 
[59]. A total of 1072 radiomic features, 536 per image 
type (T1w, T2w) were extracted. The features belonged 
to different categories: shape and size (14 features), first 
order statistics (18 features), textural (40 features), wave-
let (464 features). Textural features were computed using 
the grey level co-occurrence matrix (GLCM) and the 
grey level run length matrix (GLRLM). The full list of 
radiomic features is available in Pyradiomics documenta-
tion [60]. A fixed-bin histogram discretization (32 bins) 
was used prior to features extraction.

Radiomic features postprocessing and radiomic model 
development
Features selection and survival model training was per-
formed on the 123 retrospective patients (training data-
set). First, features were Z-score normalized to ensure 
comparable ranges for the feature values. The mean and 
standard deviation used for the feature-wise normaliza-
tion of the training set were then applied to normalize 
the features of the prospective set. The normalization 
was performed to improve the convergence of the opti-
mization algorithms used during model fitting [61]. Then, 
as the number of extracted features was much larger than 
the number of available patients, a process of features 
selection was required to reduce the dimensionality of 
the radiomic dataset and avoid overfitting.

The features selection process was performed on the 
training set and comprised (i) stability analysis and (ii) 

Table 1 Image acquisition parameters for the patients of the 
BD2Decide dataset
Image type T1w T2w
Time of repetition (ms) 486 [474–580] 4420 

[3760–5300]

Time of echo (ms) 12 [9-12] 109 [107–110]

Pixel spacing (mm) 0.63 [0.59–0.69] 0.57 [0.56–0.61]

Slice thickness (mm) 3 [3-3.5] 3 [3-4]

Spacing between slices (mm) 3.9 [3.9–4.01] 3.9 [3.9–4.4]
Data are displayed by image sequence: T1-weighted (T1w); T2-weighted (T2w).

Fig. 2 Type of magnetic resonance images acquired for the study: (A) T1-weighted image; (B) T2-weighted image. The segmented region of interest is 
also displayed
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supervised feature selection based on both univariate 
and multivariate Cox regression, similarly to a previ-
ous MRI-based radiomic study [62]. As regards the first 
step of the features selection, the stability of the features 
to small translations of the ROI (i.e., ± 10% of the length 
of the bounding box surrounding the ROI along both 
the x and y directions), used to mimic the effect of inter-
reader variability in the segmentation, was evaluated as 
described elsewhere [56, 62, 63]. Features with intra-class 
correlation coefficient (ICC) above 0.75 were considered 
stable and selected. The second step of features selection 
consisted in the evaluation of features prognostic signifi-
cance and Harrel’s concordance index (C-index) [64] in 
both univariate and multivariate Cox regression. Specifi-
cally, 100 bootstrap iterations were performed in which 
the training dataset was divided in independent subsets 
of training and validation (70% and 30%, respectively) 
and, at each iteration, potentially different feature sets 
can be found. For each iteration, univariate Cox models 
were used to select the features that were significantly 
prognostic for OS (p < 0.05). The 20 features associated 
with lower p in the univariate analysis were combined 
in a multivariate Cox model using a wrapper forward 
feature selection algorithm [62, 65]. The combination 
of features associated with the highest C-index was the 
selected feature set of the specific bootstrap iteration. 
At the end of the 100 bootstrap iterations the 5 most 
selected features were considered. The overall process 
(i.e., second step of features selection) was repeated 20 
times with different seeds of the random number genera-
tor to increase the robustness, and the final features set 
contained the 5 most selected features over the 20 repeti-
tions. Figure 3 schematically describes the 2-step process 
of features selection.

The final feature set was used to train a multivariate 
Cox model for OS on the retrospective set. The radiomic 
signature was thus obtained for each patient as the lin-
ear combination of the features and the corresponding 
regression coefficients. The median value of the signature 
in the training set was used as a threshold to classify the 
patients into high and low risk groups. Patients with a 
signature higher than a threshold are classified as high-
risk patients, while patients with signature below the 
threshold are classified as low-risk patients.

All the steps of features postprocessing, feature selec-
tion and model training were performed in Matlab 2022a 
(Mathworks, Natick, MA, USA).

Model testing and comparison
The independent prospective set comprised 108 patients. 
First the Z-score normalization of the features of the 
prospective set was performed, based on the mean and 
standard deviation of Z-score normalization estimated 
from the retrospective set. The radiomic signature of 

the prospective set was computed as linear combination 
of the features and the corresponding regression coeffi-
cients of the trained Cox model, and high/low risk clas-
sification was based on the threshold estimated from the 
training set (i.e., median value of the signature on the 
training set).

The radiomic signature prognostic performance was 
evaluated on both the retrospective (used for model 
training) and prospective (used for model testing) sets. 
First, C-index between the signature and the OS [64] was 
computed through 100 bootstrap iterations to obtain a 
distribution of C-indexes. Second, the hazard ratio (HR) 
was computed. Third, the p-value of the log-rank test [66] 
comparing the Kaplan-Meier curves [67] for high and 
low risk groups was evaluated.

The prognostic performance of the radiomic signature 
was compared with that of the cTNM and the pTNM 
on the prospective subset 1 (n = 75 patients as shown 
in Fig.  1), and with that of 7 published prognostic gene 
expression signatures (detailed below) on the prospec-
tive subset 2 (n = 90 patients as shown in Fig. 1). Finally, 
the relationship of the radiomic signature with the pTNM 
was also evaluated, by analyzing the distribution of the 
radiomic signature at different pTNM stages in the data-
set of 177 patients (i.e., retrospective and prospective 
patients for whom the pTNM was available, Fig. 1).

HNSCC/OCSCC gene expression signatures
Formalin-fixed, paraffin-embedded samples of prospec-
tive subset 2 (n = 90) were collected, and after histopath-
ological revision, selected tumor areas were manually 
macro-dissected. RNA extraction was performed using 
the Qiagen RNeasy Mini Kit with the QIAcube robotic 
station (Qiagen, Düsseldorf, Germany), according to the 
manufacturer’s recommendations. Quantification and 
quality check were performed using the Qubit 3.0 fluo-
rometer (Life Technologies, Carlsbad, CA, USA) and the 
TapeStation 4200 system (Agilent Technologies, Santa 
Clara, CA, USA).

Affymetrix human Clariom D arrays (Affymetrix, Santa 
Clara, CA, US) were used for the gene expression profil-
ing in BD2decide cohort, targeting 540,000 transcripts. 
Probe synthesis was performed from total RNA using 
the GeneChip WT Pico Reagent Kit and WT Labeling 
Kit (Affymetrix) [68]. A total of 6 cycles pre-in vitro tran-
scription amplification was performed according to the 
manufacturer’s protocol. Biotinylated and fragmented 
single-stranded cDNAs were hybridized to the arrays 
that were washed and stained using an FS-450 fluidics 
station (Affymetrix, fluidics protocol FS450_0001). Signal 
intensities were detected by a 30007G gene array scanner. 
The scanned images were processed using the Affymetrix 
GeneChip Command Console software. CEL data files 
were processed with Transcriptome Analysis Console 
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Fig. 3 Features selection process
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Software v4.0.1 and further filtering procedures were 
performed in R software (version 4.0.3).

A survey of literature was performed to retrieve gene 
expression signatures generated for the prognosis in 
HNSCC/OCSCC tumor cohorts and subsequently repro-
duce the signatures’ score on the OCSCC prospective 
subset 2 (n = 90 patients). First, we created a database 
of signatures and the following inclusion criteria were 
applied: (i) paper analyzing whole gene expression data; 
(ii) paper reporting prognostic gene expression signa-
tures; (iii) complete description of the bioinformatics 
methods; (iv) availability of the gene list, weights, and 
algorithm to compute signature’s score. Inclusion crite-
ria were applied for a survey in literature in public data-
base such as “Pubmed” (www.ncbi.nlm.nih.gov/pubmed) 
and “EMBASE” (www.embase.com) imposing a selec-
tion using keywords. Filters includes MeSH terms such 
as “HNSCC”, “signatures”, and “gene expression”. Conse-
quently, each paper was carefully evaluated to exclude 
those based on proteins or immunohistochemistry. The 
genes were re-annotated based on EntrezID [69] and the 
bioinformatics methods were retrieved from the origi-
nal manuscripts to reproduce the signature’s algorithms 
allowing applying them on external datasets along with 
thresholds for patient stratification.

Statistical analysis
The characteristics of retrospective and prospective 
cohorts were compared using Mann-Whitney U tests for 
continuous variables and chi-squared test for categorical 

variables. Results of the Cox proportional hazard regres-
sion model are presented as Harrel’s C-index (median 
and IQR), HR (median and 95% confidence intervals 
(CIs)) and p-value of the log-rank test. To compare the 
distributions of C-index the Mann-Whitney U test was 
applied in case of comparison between two groups and 
the Kruskal-Wallis test with Tukey-Kramer p-value cor-
rection was applied in case of multiple comparison. All 
the statistical analyses were performed in Matlab 2022a.

Results
Patient characteristics
A dataset of 231 patients affected by stage III/IVa-b 
OCSCC, included in the BD2Decide database [47] for 
whom an MRI evaluation was available was considered 
for this study. The patient dataset comprised 123 ret-
rospective patients and 108 prospective ones. Table  2 
shows the clinical data of the selected patients included 
in the study.

The two sets, beside the expected difference in median 
follow-up, significantly differed in the higher percent of 
stage IVa-b and smoking status in prospective patients.

Features selection and survival model training and testing
Features selection and survival model training was per-
formed on the retrospective dataset composed of 123 
patients. From the initial 1072 radiomic features, 222 
stable features (67 T1w and 155 T2w) were considered. 
Of these, the final 5 selected features are listed in Table 3, 
together with the respective means and standard devia-
tions used for the Z-score normalization and the cor-
responding regression coefficients of the trained Cox 
model. All the 5 selected features were extracted from 
the waveletLLL transform of the T2w images, with 4 
textural-related features and 1 first order statistics fea-
ture. The trained Cox model demonstrated a significant 
prognostic value of the radiomic signature for OS on 
the retrospective cohort: C-index 0.68 (IQR 0.66–0.70), 
HR 2.64 (95% CI 1.62–4.31), log-rank p < 0.001. The Cox 
model applied on the 108 prospective patients main-
tained for the OS a significantly prognostic value, even if 
less relevant, due to the shorter follow-up: C-index 0.62 
(IQR 0.58–0.64), HR 2.12 (95% CI 1.04–4.47), log-rank 

Table 2 Clinical data of the patients used for the study
Patient characteristics Retrospec-

tive set 
(123)

Prospective 
set (108)

p-
value

Date of diagnosis 2008–2014 2015–2018 -

Median follow-up 37.27 
months (IQR 
14.54–65.69)

25 months 
(IQR 
16.91–31.56)

Gender

M
F

70 (57%)
53 (43%)

65 (60%)
43 (40%)

0.6884

Median age 61 years (IQR 
54.25–69)

60 years (IQR 
50–72)

0.8574

cTNM 8th edition

III
IVa/b

36 (29%)
87 (71%)

18 (17%)
90 (83%)

0.0291

Smoking status

Current/Former
Never
Unknown

83 (67%)
40 (33%)
0

46 (43%)
37 (34%)
25 (23%)

Treatment

Including surgery
Not including surgery

107 (87%)
16 (13%)

98 (91%)
10 (9%)

0.41

Quantitative variables are displayed as median and interquartile range (IQR). 
Statistical tests (Mann-Whitney, chi-squared) are used to evaluate potential 
statistical differences between the patient cohorts.

Table 3 Selected features and their mean (standard deviation) 
and regression coefficients
Feature Mean (std) Coeff.
T_T2_waveletLLL_glrlm_LongRunEmphasis 1.27 (0.21) 73.07

T_T2_waveletLLL_glrlm_RunVariance 0.10 (0.08) -59.29

T_T2_waveletLLL_glrlm_RunPercentage 0.93 (0.04) -43.98

T_T2_waveletLLL_firstorder_Range 7.49 (3.85) 0.34

T_T2_waveletLLL_glrlm_ShortRunEmphasis 0.94 (0.03) 58.07
Mean and standard deviation of the features in the training dataset (used for 
the Z-score normalization) and regression coefficients of the Cox proportional 
hazard regression model.

http://www.ncbi.nlm.nih.gov/pubmed
http://www.embase.com
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p = 0.05. The Kaplan-Meier curves for the retrospective 
and prospective datasets (Fig. 4A and B respectively) in 
both cases significantly separated the high- from the low-
risk groups. In both the retrospective and prospective 
cohorts, the radiomic signature outperformed the cTNM 
staging, with higher stratification capability between 
high- and low-risk groups and higher C-index (Supple-
mentary figures S1 and S2).

Model comparison and analysis
The radiomic prognostic model outperformed the cTNM 
and pTNM staging, both in terms of C-index and high/
low risk patient stratification. Table 4 lists the results of 
the radiomic signature and the cTNM and pTNM staging 
in the entire prospective set of 108 patients and the pro-
spective subset 1 (75 patients for whom the pTNM was 
available).

As shown in Fig.  5, on the prospective subset 1 of 75 
patients, the radiomic signature successfully separated 
the low/high risk group patients (log-rank p = 0.03), while 
the differences between cTNM and pTNM classes were 
not statistically significant (Fig. 5A and B C). Moreover, 
the C-index of the radiomic prognostic model was 0.62 
(IQR 0.58–0.65) compared to 0.54 (IQR 0.52–0.55) of the 
cTNM staging and of 0.56 (IQR 0.53–0.61) of the pTNM 
staging (Kruskal-Wallis p < 0.001, with Tukey-Kramer 
correction) (Table 4; Fig. 5D).

From the literature survey, after filtering for the eligi-
bility criteria, 7 gene expression prognostic signatures 
[48–54] (Supplementary Table  1) were identified and 

applied to the prospective subset 2 (n = 90 prospective 
patients). The prognostic performance of the radiomic 
model on the prospective subset 2 (patients with avail-
able gene expression) was compared with that of the 7 
gene expression signatures. Figure  6 shows the C-index 
of the 7 genomic signatures, the cTNM staging and the 
radiomic signature. In particular, the radiomic model 
performed significantly better than 6 over 7 genomic sig-
natures and the cTNM staging (Kruskal-Wallis p < 0.001, 
with Tukey-Kramer correction). For G-3 genomic signa-
ture the C-index (0.64, IQR 0.60–0.68) did not present 
statistical difference from the radiomic model (0.66, IQR 
0.60–0.69).

Finally, as shown in Fig. 7, the radiomic signature was 
significantly different between pTNM stages III and 
IVa/b (Kruskal-Wallis p < 0.001, with Tukey-Kramer cor-
rection). No significant differences in the radiomic signa-
ture distribution were observed between the pTNM stage 
IVa and IVb. By combining the radiomic signature and 
the pTNM staging in a multivariate Cox model applied to 
the dataset of 177 patients, we found that both are inde-
pendent prognostic factors of the OS (p < 0.001, HR 1.85 
and 1.73, respectively).

Discussion
An MRI radiomic prognostic signature, based on fea-
tures extracted from T1w and T2w images of primary 
tumor and composed of 5 features coming from T2w 
images, was developed using locally advanced OCSCC 
from a multi-centric retrospective cohort and tested on a 

Fig. 4 Radiomic model. (A) Kaplan-Meier curves for the retrospective dataset (n = 123 patients, used for model training). (B) Kaplan-Meier curves for the 
prospective dataset (n = 108 patients, used for model testing). For comparison, a follow-up time of 36 months was displayed. Shadows represent 95% 
confidence interval
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multi-centric prospective cohort. The radiomic signature 
demonstrated a significant prognostic power for OS and 
successfully stratified patients in low/high risk groups by 
Kaplan-Meier curves in both cohorts, even if the follow-
up of prospective cohort was significantly shorter than 
that of retrospective cohort.

To date, only three studies developed MRI-radiomic 
prognostic signatures (based on T1w and/or T2w 
images) in OCSCC [32, 34, 42]. Mes et al. [32] devel-
oped a T1w-based radiomic signature on a mono-centric 
retrospective cohort (102 patients) and tested it on an 
external mono-centric retrospective cohort (76 patients). 
Noteworthy, in both cohorts 30–40% of stage I and II 
were included and the median follow-up was similar to 
our retrospective cohort. Despite these differences, the 

prognostic power and the low/high risk patient stratifi-
cation performance obtained from their MRI-radiomic 
signature was comparable to the ones achieved herein. 
Wang et al. [34] developed a T2w-based radiomic signa-
ture to predict lymph node metastasis on a mono-centric 
retrospective cohort of 236 patients with tongue cancer 
(training set of 157 patients and test set of 79 patients). 
The combined clinical-radiomic signature was found to 
be an independent prognostic factor for poor OS in a 
multivariate Cox regression analysis (HR of 17.46). More-
over, Mossinelli et al. [42] developed several MRI-based 
radiomic signature for the prognosis of OS in 79 tongue 
cancer patients, by considering different MRI sequences. 
Clinical, radiomic and clinical-radiomic models were 
developed. When considering the radiomic models for 

Fig. 5 Comparison of the prognostic performance of the radiomic model with the clinical tumor-node-metastasis (cTNM) stage and pathological tumor-
node-metastasis (pTNM) stage on the prospective subset 1 (n = 75 prospective patients). (A/B) Kaplan-Meier curves for the cTNM/pTNM, with low-risk 
corresponding to cTNM/pTNM stage = III and high-risk corresponding to cTNM/pTNM stage = IV. Shadows represent 95% confidence interval. (C) Kaplan-
Meier curves for the radiomic signature. Shadows represent 95% confidence interval. (D) Concordance indexes (C-index) for the cTNM, pTNM and ra-
diomic signatures. *p < 0.05 (Kruskal-Wallis with Tukey-Kramer correction)
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OS, C-indexes of 0.79, 0.73, 0.72 and 0.75 were obtained 
with the contrast-enhanced T1, T2w, apparent diffu-
sion coefficient map and diffusion-weighted images, 
respectively. From their study, the contrast-enhanced T1 
sequence provided the best performance in predicting 
OS, while comparable results were obtained with T2w 
images, apparent diffusion coefficient map and diffusion-
weighted images. Although the promising results, the 
study is limited by the low number of patients and the 
lack of internal and external validation. Similar to [32, 
34, 42], our study demonstrated the contribution of MRI-
based radiomics in OS prediction for OCSCC patients, 

compared to the traditionally metrics used in clinics, 
namely cTNM and pTNM. Besides T1w and T2w, also 
diffusion-weighted-based radiomics demonstrated to be 
useful for predicting OS, loco-regional recurrence, cause-
specific mortality [42] and the histological tumor grade 
[70] in OCSCC patients. However, the diffusion-weighted 
sequence is not performed in the clinical routine, thus 
limiting its potential application, and was not available 
for the cohorts entered in the present study. Although 
from one side the inclusion of radiomic features from 
other sequences might have increased the prognostic 

Table 4 Performances of radiomic, clinical and pathologic 
tumor-node-metastasis signatures
Dataset Source C-index Log-rank HR Log-

rank 
p-value

Prospective
(n = 108)

Rad 0.62 (IQR 
0.58–0.64)

2.12 (CI 
1.04–4.47)

0.05

cTNM 0.55 (IQR 
0.54–0.56)

1.67 (CI 
0.65–4.27)

0.40

Prospective 
subset 1
(n = 75)

Rad 0.62 (IQR 
0.58–0.65)

2.49 (CI 
1.18–5.25)

0.03

cTNM 0.54 (IQR 
0.52–0.55)

1.47 (CI 
0.53–4.04)

0.63

pTNM 0.56 (IQR 
0.53–0.61)

1.40 (CI 
0.49–3.91)

0.72

Rad: Radiomic signature; cTNM: clinical tumor-node-metastasis stage; pTNM: 
pathologic tumor-node-metastasis stage; IQR: interquartile range; CI: 95% 
confidence interval

Fig. 7 Radiomic signature distributions in patients classified according 
to the pathologic tumor-node-metastasis stage (pTNM = III – IVa – IVb). 
*p < 0.05 (Kruskal-Wallis, with Tukey-Kramer correction). n = 37 patients 
presented pTNM = III; n = 76 patients presented pTNM = IVa; n = 64 patients 
presented pTNM = IVb.

 

Fig. 6 Comparison of the prognostic performance of the radiomic model with 7 prognostic genomic signatures and the clinical tumor-node-metastasis 
stage (cTNM) in terms of concordance index (C-index), on the prospective subset 2 (n = 90 prospective patients). Grey boxplots: C-index of the 7 genomic 
signatures; blue boxplot: C-index of the cTNM staging; red boxplot: C-index of the radiomic signature (Rad). The C-index of the radiomic model was sig-
nificantly different (Kruskal-Wallis p < 0.001, with Tukey-Kramer correction) from that of the cTNM staging and of 6 over 7 genomic signatures (G-1, G-2, 
G-4, G-5, G-6 and G-7). No statistical difference was found between the C-index of the radiomic signature and G-3
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performance of the developed radiomic model by provid-
ing complementary information, from the other side the 
use of standard-of-care T1w and T2w images widens its 
applicability, thus representing a strength of the study.

Parallel to the radiomic approach proposed herein, 
end-to-end radiomic-based deep learning models have 
been proposed (e.g., [71, 72]) and used to predict OS in 
HNSCC patients [73]. However, differently from the deep 
features, radiomic features can be linked to tissue proper-
ties, as the shape, size and texture, thus allowing for an 
easier interpretability of the model.

When compared to cTNM and pTNM, our radiomic 
model showed a higher performance in forecasting sur-
vival but the two prognostic factors (radiomics and 
pTNM) resulted independent predictors of outcome at 
multivariable analysis. Interestingly, even if evaluated in 
a limited number of cases (75 patients), our radiomic sig-
nature was significantly different between pathologic III 
and IVa/b stages suggesting that it may be useful to pre-
dict pathologic stage in patients receiving surgery. This 
may have an impact on treatment personalization.

The establishment of BD2Decide database provides 
numerous opportunities for conducting different analy-
ses of clinical/radiomics/transcriptomics data to explore 
their single or combined prognostic role (see further 
data on [47]). As a preliminary analysis, we selected 7 
gene expression prognostic signatures from the available 
literature and compared their performance with that of 
radiomic signature using the prospective dataset 2 (90 
patients). Only one gene expression signature (G-3, [50]) 
presented, in terms of C-index, a prognostic performance 
comparable to that of the developed radiomic model. 
Also in this case, the difference in the cohorts where the 
signatures were developed, the anatomical subsite ori-
gin of the analyzed tumors (OCSCC versus all HNSCC) 
and the length of follow-up should be considered as con-
founding aspects. Deeper analyses and possibly a biologi-
cal oriented characterization of the radiomic features will 
hopefully enable to better interpret these data.

The present study is not exempt from limitations. 
First, the small sample size and the different follow-up 
between the retrospective and prospective cohorts may 
have limited the prognostic power. Second, the prognos-
tic performance was higher in the retrospective cohort 
(used for training) than in the retrospective cohort (used 
for validation). This can be related to the differences 
between the two cohorts. Cross-validation is a potential 
solution to address overfitting. However, model training 
on a retrospective cohort combined with validation on 
a prospective one is recommended whenever possible. 
Moreover, compared to cross-validation, train/validation 
split allows to obtained a unique prognostic model which 
can be applied to new external datasets. Third, only a 
feature selection pipeline, based on both univariate and 

multivariate Cox regression, was considered, based on 
previous studies [62]. However, as reported by Parmar 
et al. [31], in which 13 feature selection methods and 11 
machine learning classifiers were compared in terms of 
prognostic performance in HNSCC patients, the feature 
selection method accounted for about the 14% of the 
total variance in the area under receiver operator charac-
teristic curve. In future, other feature selection methods, 
as the least absolute shrinkage and selection operator [37, 
39] or the minimum redundancy maximum relevance 
[31] methods will be explored as well as regularization 
methods for feature selection for Cox regression model 
[74]. Fourth, only T1w and T2w image sequences were 
considered because the contrast-enhanced T1 sequence 
was available only for a subset.

In future, the potential of radiomics in the prediction 
of OS in HPV+ OCSCC patients should be evaluated. 
Moreover, radiomic features extracted from metastatic 
regional lymph nodes, which were not included herein, 
can be considered, as done in previous works [62]. 
Finally, combined radiomic, clinical and genomic mod-
els can be developed to explore the additive prognostic 
information compared to the single models.

Conclusion
All taken together, our results further demonstrate 
that MRI, which is the most used imaging modality in 
HNSCC patients, contains remarkable prognostic infor-
mation, and can provide a non-invasive and cost-effective 
prognostic factor, especially given that MRI scans (and 
especially T1w and T2w sequences) are performed rou-
tinely in clinical practice.

Furthermore, if confirmed in other patient cohorts, the 
developed radiomic signature, by potentially predicting 
the pathologic stage in patients receiving surgery, could 
be applied to support the clinical decision process.
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