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Abstract 

The serine-glycine-one-carbon (SGOC) metabolic pathway is critical for DNA methylation, histone methylation, and 
redox homeostasis, in addition to protein, lipid, and nucleotide biosynthesis. The SGOC pathway is a crucial metabolic 
network in tumorigenesis, wherein the outputs are required for cell survival and proliferation and are particularly 
likely to be co-opted by aggressive cancers. SGOC metabolism provides an integration point in cell metabolism and 
is of crucial clinical significance. The mechanism of how this network is regulated is the key to understanding tumor 
heterogeneity and overcoming the potential mechanism of tumor recurrence. Herein, we review the role of SGOC 
metabolism in cancer by focusing on key enzymes with tumor-promoting functions and important products with 
physiological significance in tumorigenesis. In addition, we introduce the ways in which cancer cells acquire and use 
one-carbon unit, and discuss the recently clarified role of SGOC metabolic enzymes in tumorigenesis and develop-
ment, as well as their relationship with cancer immunotherapy and ferroptosis. The targeting of SGOC metabolism 
may be a potential therapeutic strategy to improve clinical outcomes in cancers.

Keywords Serine-glycine-one-carbon metabolism, Vulnerability, Metabolic enzyme inhibitors, Immunotherapy, 
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Introduction
Cell metabolic reprogramming is a common feature 
of human tumors and refers to the reconnection of cell 
metabolic flux to produce enough metabolites to support 
rapid cell proliferation under limited nutrition and stress 
conditions [1, 2]. Cell growth and proliferation require 

the construction of new cell components, including pro-
teins, nucleic acids, and lipids, as well as the maintenance 
of redox, genetic and epigenetic states [3–5]. The meta-
bolic unit known as SGOC metabolism, which provides 
serine, glycine, one-carbon units and other intermedi-
ates, can satisfy many of these requirements [6–8]. Fur-
thermore, SGOC metabolism provides substrates for 
methylation reactions and affects cellular antioxidative 
capacity, thus promoting tumor homeostasis [9–11]. 
In 2014, Mehrmohamadi and his colleagues first pro-
posed the concept of the SGOC metabolic network, and 
determined its extensive and heterogeneous functions in 
human cancer [11].

Recent studies have suggested a new role for SGOC 
metabolism in cancer pathogenesis. In neuroendo-
crine prostate cancer, SGOC metabolic networks are 
highly expressed and activated, thus suggesting a tar-
getable vulnerability [12]. In MYCN-amplified neuro-
blastoma, SGOC metabolism is very active in supplying 
glucose-derived carbon for serine and glycine synthesis 
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and presents a MYCN-dependent metabolic vulnerabil-
ity [13–15]. In colorectal cancer (CRC) with ILF3 over-
expression, SGOC metabolic enzymes are deregulated 
under tumorigenic conditions and may be potential tar-
gets for cancer therapy [16]. In breast cancer, the SGOC 
network is a metabolic hallmark inherent to CDK12-
induced tumorigenesis, which indicates that an action-
able vulnerability exists for breast cancer therapy [17]. 
Taken together, SGOC metabolism may represent a vul-
nerability in all highly SGOC-activated tumors in future 
scenarios. Herein, we summarize the roles of SGOC 
metabolism in tumorigenesis and development, and dis-
cuss their relationship with tumor immunotherapy and 
ferroptosis. SGOC metabolic enzymes may be potential 
therapeutic target genes for cancer treatment.

Serine, glycine and one‑carbon metabolism
Serine and glycine metabolism
Serine is the main donor of one-carbon units, which can 
enter cells via many different transporter proteins or be 
synthesized de novo by the cell [18]. Extracellular serine 
supports the survival and proliferation of many types 
of cancer cells. A set of metabolite profiles of 60 differ-
ent cancer cells showed that cancer cells voraciously 
consume extracellular serine, wherein this consump-
tion ranks second only to that of glutamine among the 
amino acids [19]. Serine starvation can induce stress 
and metabolic remodeling, and inhibit cancer progres-
sion [4, 20, 21]. Moreover, Yang and colleagues found 
that tumor protein p53-mediated cell death was signifi-
cantly enhanced in response to Nutlin-3 treatment dur-
ing serine starvation [22]. The inhibition of the serine 
synthesis pathway and dietary serine depletion syner-
gistically inhibit one-carbon metabolism and cancer cell 
growth [4]. In addition, cancer cells can also obtain serine 
via lysosomal degradation of proteins, as occurs during 
macrophage phagocytosis and autophagy [23–25]. The 
key metabolic enzymes in serine and glycine metabo-
lism include phosphoglycerate dehydrogenase (PHGDH), 
phosphoserine aminotransferase 1 (PSAT1), phosphoser-
ine phosphatase (PSPH), serine hydroxymethyltrans-
ferase 1/2 (SHMT1/2). Serine can be converted to glycine 
by SHMT1 in the cytoplasm or SHMT2 in the mitochon-
dria [26–28]. During this process, a one-carbon unit 
separated from serine is transferred to tetrahydrofolate 
(THF) to produce 5-methyltetrahydrofolate  (CH2-THF) 
[29].  CH2-THF is a precursor of folate and is reduced to 
5-methyltetrahydrofolate (5-CH3-THF) by 5,10-methyl-
enetetrahydrofolate reductase (MTHFR); finally, 5-CH3-
THF is demethylated to yield folate to complete the folate 
cycle [30].

In addition, many cancer cells contain a glycine cleav-
age system through which glycine is cleaved in the 

presence of the glycine decarboxylase complex to pro-
duce ammonia, carbon dioxide, and methylenetetrahy-
drofolate to fuel the production of one-carbon units [31].

Folate‑mediated one‑carbon metabolism (FOCM)
Folic acid is a water-soluble B vitamin that can be con-
verted to THF in vivo and is involved in many biochemi-
cal reactions in  vivo (Fig.  1). Folate metabolism often 
occurs in both the cytoplasm and mitochondria and 
is compartmentalized in distinct regions in the cyto-
plasm, nucleus and mitochondria, depending on whether 
the one-carbon units are derived from serine or gly-
cine catabolism [32–34]. The key metabolic enzymes 
in FOCM metabolism include methylenetetrahydro-
folate dehydrogenase 1/1L (MTHFD1/1L), methylene-
tetrahydrofolate dehydrogenase 2/2L (MTHFD2/2L) 
and aldehyde dehydrogenase 1 family member L1/L2 
(ALDH1L1/2) and so on. In most cultured cells, mito-
chondrial SHMT2 transfers the β-carbon atom from 
serine to THF to generate  CH2-THF. This folic acid inter-
mediate can also be produced by separating a one-carbon 
unit from glycine in a reaction catalyzed by the glycine 
cleavage system [35]. Subsequently, MTHFD2 or MTH-
FD2L uses  NAD+ or  NADP+ to oxidize  CH2-THF to 
generate 10-formyltetrahydrofolate (10-CHO-THF) and 
produce a molecule of Nicotinamide adenine dinucleo-
tide phosphate (NADPH) [36, 37]. Moreover, 10-CHO-
THF can be used for the formylation of mitochondrial 
promoters [38, 39]. In addition, it can provide fuel for 
cytoplasmic and nuclear reactions or be excreted from 
the cell [40]. Mitochondrial 10-CHO-THF does not 
cross the mitochondrial membrane; thus, one of the one-
carbon units in 10-CHO-THF is converted to formate 
in an MTHFD1L-mediated reaction, and formate can 
be exported to the cytoplasm [41]. During this process, 
adenosine diphosphate (ADP) can be phosphorylated to 
adenosine triphosphate (ATP) or used to generate THF 
and release  CO2 via ALDH1L2, accompanied by NADPH 
production [42]. The formate transferred to the cyto-
plasm is dehydrogenated by MTHFD1 in a reaction that 
consumes ATP to regenerate cytosolic 10-CHO-THF for 
the de novo synthesis of purines [43]. This reaction can 
generate cytosolic  CH2-THF for homocysteine remeth-
ylation and thymidylate synthesis via MTHFR or thy-
midylate synthase (TYMS) [35]. This  CH2-THF can be 
reduced to THF via cytoplasmic SHMT1, which com-
pletes the folate cycle and the conversion of glycine to 
serine [44]. In addition, folic acid is reduced to 7,8-dihy-
drofolate (DHF) and then to THF by dihydrofolate reduc-
tase (DHFR) [30]. In conclusion, the folic acid cycle, as 
the common metabolic pathway between SGOC and 
one-carbon metabolism, has high plasticity.
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Methionine cycle and transsulfuration pathway
The methionine cycle is commonly used to produce 
S-adenosyl-l-methionine (SAM), which is an ubiquitous 
methyl donor used by a large class of SAM-dependent 
methyltransferases for DNA, RNA, protein and lipid 
methylation [45]. The SGOC pathway is interconnected 
with the methionine cycle through the action of MTHFR, 
which catalyzes the irreversible conversion of  CH2-THF 
to 5-CH3-THF. Afterwards, 5-CH3-THF is used by ubiq-
uitously expressed methionine synthase (MS) to remeth-
ylate homocysteine in a vitamin B12-dependent reaction 
[46]. Furthermore, serine apparently plays an important 
role in the methionine cycle in  vivo, and stable isotope 
tracing studies have shown that most methyl groups used 
for systemic homocysteine remethylation are derived 
from serine [47]. However, some reports have shown that 
serine-derived one-carbon units cannot be used to sup-
port remethylation when exogenous methionine levels 
are high [48, 49]. Glutathione (GSH) is synthesized from 
cysteine, glutamate and glycine in cytoplasmic lysates 
and can be transported to various cellular compartments 
[50]. Serine and homocysteine are also linked to the 
methionine cycle via the transsulfuration pathway, and 
both homocysteine and serine are precursors of cysteine 

synthesis. Due to the fact that both glycine and cysteine 
are products of serine metabolism, the depletion of ser-
ine results in lower GSH levels, whereas the activation of 
the SGOC pathway increases GSH synthesis [51]. In con-
clusion, the SGOC pathway is closely associated with the 
methionine cycle and transsulfuration pathway.

Serine‑glycine‑one‑carbon metabolism in tumors
The SGOC network is a metabolic hallmark that is fre-
quently upregulated in tumors and orchestrates two 
nearly identical, intertwined methylation cycles in 
the cytoplasm and mitochondria, thus having high 
clinical relevance [18, 52, 53]. The key metabolic 
enzymes in SGOC (folate cycle) metabolism include 
PHGDH, PSAT1, PSPH, SHMT1/2, MTHFD1/1L and 
MTHFD2/2L. Recently, an increasing number of studies 
have reported that SGOC metabolic enzymes are highly 
expressed in various cancers and indicate poor progno-
sis. PHGDH is the major rate-limiting enzyme in the first 
step of the SGOC pathway, which is abnormal in various 
diseases, especially in cancers [54, 55]. The expression of 
PHGDH in pancreatic cancer patients is related to tumor 
size, lymph node metastasis, and TNM stage of pancre-
atic cancer patients; in addition, it is an independent 

Fig. 1 Serine-glycine-one-carbon metabolic pathway
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prognostic indicator [56]. In lung cancer, SHMT1 and 
SHMT2 are both highly associated with the infiltra-
tion of different types of immune cells, and are potential 
prognostic biomarkers [57, 58]. A study of 7,309 patients 
with non-Hodgkin’s lymphoma showed that the SHMT1 
C1420T polymorphism may be associated with the risk 
of developing non-Hodgkin’s lymphoma [59]. These data 
mentioned above suggest that SGCO metabolic enzymes 
may be a marker of tumor prognosis.

Redox effect of SGOC in tumors
Recent studies have demonstrated the effects of SGOC 
metabolism on dynamic redox balance and epigenet-
ics [48]. The redox state is mainly determined by the 
dynamic balance between the generation of reactive 
oxygen species (ROS) and the activation of the antioxi-
dant system [60]. SGOC-related metabolic enzymes can 
affect the NADPH/NADP+ ratio in tumors and regulate 
the redox state of cells. In fact, genomic analyses have 
shown that many cancers, especially breast cancer and 
non-small cell lung cancer (NSCLC), exhibit amplifica-
tion and upregulated expression of SGOC metabolic 
enzymes, such as PHGDH and SHMT2 [61, 62]. Research 
has shown that the serine catabolic enzyme SHMT2, is 
induced when MYC-transformed cells are subjected to 
hypoxia; in the mitochondria, SHMT2 can initiate ser-
ine degradation to  CO2 and  NH4+, resulting in the net 
production of NADPH from  NADP+ [63]. Knockdown 
of SHMT2 in MYC-dependent cells reduced the cellular 
NADPH:NADP+ ratio, increased cellular reactive oxygen 
species, and triggered hypoxia-induced cell death [63, 
64]. In addition, one-carbon units for purine and thymi-
dine synthesis can be generated from serine by cytosolic 
or mitochondrial folate metabolism [40]. Mitochondrial 
folate metabolic enzymes play a crucial role in this pro-
cess. Folate metabolism can produce mitochondrial 
NADPH through ALDH1L2 and potential MTHFD2, 
and the knockdown of SHMT2 in some cancer cell lines 
increases their vulnerability to oxidative stressors [65]. 
The NADPH/NADP+ ratio in turn may play an impor-
tant role in regulating the cytosolic flux of one-carbon 
units through the MTHFD1 dehydrogenase reaction [66].

Epigenetic roles of SGOC in tumors
Histone methyltransferase G9A promotes the transcrip-
tion of key SGOC metabolic enzymes by maintaining 
an active chromatin state marked by histone H3 lysine 
9 monomethylation (H3K9me1) in an ATF4-dependent 
manner [67]. SUMOylation is a reversible post-trans-
lational modification by conjugating with small ubiq-
uitin-like modifiers (SUMOs) and a common protein 
modification in cancers [68]. NRF2 SUMOylation pro-
motes the elimination of ROS in cells by increasing the 

transcription of glutathione peroxidase 2 (Gpx2), which 
leads to the upregulation of PHGDH in hepatocellular 
carcinoma (HCC) cells. These changes promote the pro-
duction of one-carbon units in the de novo synthesis of 
serine and purine, thus promoting HCC [69]. Research-
ers have found that KDM4C epigenetically activates 
pathway genes under steady-state and serine deprivation 
conditions by removing the repressive histone modifi-
cation histone H3 lysine 9 trimethylation (H3K9me3), 
in the serine-glycine synthesis pathway [70]. This find-
ing links KDM4C-mediated H3K9 demethylation and 
ATF4-mediated transactivation in amino acid metabo-
lism reprogramming for cancer cell proliferation. The 
deprivation of the SGOC metabolic pathway can lead to 
a significant drop in total ATP levels in rapidly prolifer-
ating cells, thus reducing the transfer of methyl to DNA 
and RNA, which can lead to changes in methyl transfer 
but will not induce the activation of AMP activated pro-
tein kinase (AMPK) [48]. One study showed that SHMT2 
desuccinylation is a key signal for cancer cells to adapt to 
the serine metabolism process to achieve rapid growth, 
and the authors emphasized that SIRT5, as a candidate 
target to inhibit serine catabolism, is a strategy to block 
tumor growth [71].

Transcriptional regulation of SGOC in tumors
In addition to the effects of SGOC metabolism on 
dynamic redox balance and epigenetics, all of the SGOC 
metabolic enzymes are transcriptionally regulated by 
various transcription factors during the stress response 
or oncogene activation [72]. Ma et  al. identified inter-
acting proteins and detected their regulatory effects on 
translation initiation [73]. They found that PHGDH not 
only catalyzes serine synthesis and activates the AKT 
pathway but also interacts with the translation initiation 
factors eIF4A1 and eIF4E to promote the assembly of 
eIF4F on the 5’mRNA structure to increase the expres-
sion of related proteins, thus promoting the development 
of pancreatic cancer [73]. Studies have shown that in the 
absence of amino acids, cancer cells induce the expres-
sion of PHGDH, PSAT1, and PSPH in a GCN2-ATF4-
dependent manner to produce sufficient amino acids 
[70, 74, 75]. Other transcription factors such as NRF2 
and MYC, can also activate SGOC metabolism [69, 76, 
77]. There is a MYC binding site E-box at the PHGDH, 
PSAT1, and SHMT gene sites, and knockout of MYC 
reduces their expression [77, 78]. In addition, HIF-1 and 
HIF-2 transcription factors can induce the expression of 
PHGDH, PSAT1, and SHMTs in breast cancer cell lines 
under hypoxia [79, 80]. The transcription regulators TAZ 
and YAP (TAZ/YAP) have become tumor-promoting 
factors that drive many carcinogenic characteristics, 
including improving cell growth, resisting cell death, 
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and promoting cell migration and invasion. TAZ/YAP 
can induce the expression of glutamate oxaloacetate 
transaminase 1 (GOT1) and PSAT1 to produce more 
α-ketoglutarate and to promote the growth of breast can-
cer cells [81]. Recently, Liu et al. found that the lysine 64 
residue (SHMT2K64) on SHMT2 and β-catenin and the 
transcription factor TCF4 interact to form SHMT2/β-
catenin/TCF4 positive feedback loop, which inhibits 
ubiquitination-mediated degradation of β-catenin and 
promotes the proliferation and metastasis of CRC cells 
[29].

In conclusion, enhanced SGOC pathway activity may 
affect cancer cell processes, especially metabolism. 
Metabolites in the SGOC pathway (synthetic precursors 
of macromolecules, reducing substances, etc.) meet the 
metabolic requirements of rapid growth and proliferation 
of cancer cells. Moreover, the targeting of SGOC meta-
bolic enzymes undoubtedly provides a new direction 
for exploring tumor therapy and brings hope for further 
research on tumor therapy.

Serine‑glycine‑one‑carbon metabolism in cancer 
immunotherapy
The immune system plays an important role in control-
ling cancer progression. From the perspective of onco-
genesis, tumor cells are transformed from normal cells, 
and this process from “self” to “non-self” is often closely 
monitored by the immune system and affected by an 
effective immune response [82]. The innate and adaptive 
immune systems interact to achieve effective anti-tumor 
immune monitoring [83]. Cancer immunotherapy has 
changed the cancer treatment paradigm, and these thera-
pies aim to improve the anti-tumor immune response 
[84]. T lymphocytes are sentinels of the adaptive immune 
system, which are specifically used to identify and elimi-
nate threats to the host [85]. The demand for specific 
nutrients that support the function of T cells increases 
the possibility that the metabolic microenvironment and 
availability of nutrients affect immunity by affecting the 
function of T cells [86]. Recently, some researchers have 
reported on the key role of non-essential amino acid ser-
ine in the effector T-cell response. Serine is essential for 
many biosynthetic and signal transduction pathways, 
including protein, nucleotide and glutathione synthesis, 
and is crucial for the growth and survival of proliferating 
cells [87]. After T-lymphocyte activation, T cells upregu-
late the enzymes of the SGOC metabolic network, and 
rapidly increase the process of serine conversion to one-
carbon metabolism [88]. From the perspective of mecha-
nism, serine provides glycine and one-carbon unit for de 
novo synthesis of proliferating T cells, and one-carbon 
unit in formate can rescue T cells from serine deficiency 
[88]. This suggests that the availability of serine in  vivo 

may have important therapeutic significance for the 
immunotherapy and anti-tumor T-cell responses. Folic 
acid dependent one-carbon metabolism is a key meta-
bolic process supporting cell proliferation, thus providing 
a carbon source for the synthesis of nucleotides in DNA 
and RNA [89]. Luteijn et al. determined that SLC19A1, as 
a folic acid organophosphorus reverse transporter, is the 
main transporter of cyclic dinucleotides (CDNs) by using 
genome wide CRISPR interference screening technology 
[90]. The inhibition of SLC19A1 can reduce the trans-
port of folic acid, thereby reducing the uptake of CDNs 
by cancer cells [90, 91]. This discovery is of great signifi-
cance for cancer immunotherapy and the host’s respon-
siveness to pathogenic microorganisms that produce 
CDNs. Researchers have also found that an immunosup-
pressive subset of tumor cells can be distinguished from 
the nonimmunosuppressive population by its upregu-
lation of folate receptor beta (FRβ) and restriction to 
immunosuppressive tumor microenvironment [92]. Pem-
etrexed, which is a folate pathway inhibitor, can increase 
the activation of T cells in mouse tumors, and effectively 
induce immunogenic cell death in mouse tumor cells, as 
well as exert the inherent effects of T cells in vitro, such 
as enhancing mitochondrial function and T-cell activa-
tion [93]. Interestingly, some researchers have found that 
tryptophan (rather than serine) is the theoretical source 
of IDO1 (an enzyme in tumor immune escape) metab-
olism of one-carbon unit, and their research results 
showed that when cancer cells express IDO1, it will pro-
mote tryptophan to generate a carbon unit for the de 
novo synthesis of purine nucleotides [94]. Under the con-
dition of low serine, tryptophan can be used as an alter-
native carbon source to support proliferation [95, 96]. 
Cancer cells release tryptophan derived formate, which 
can be used by pancreatic stellate cells to support the 
synthesis of purine nucleotides, thus avoiding the use of 
immunotherapy [95].

Recently, it has been reported that PSAT1 hypermeth-
ylation is related to T-cell dysfunction, shortened survival 
time and immune cell infiltration in breast cancer [97]. 
In addition, the expression of PSAT1 in lung cancer was 
significantly positively correlated with tumor mutational 
burden, and negatively correlated with tumor immune 
dysfunction and rejection [97]. It has been suggested that 
PSAT1 may be a new biomarker for the survival of lung 
cancer patients and for predicting the efficacy of immu-
notherapy. The infiltrating immune cells in ferroptosis-
related genes (FRGs) in gastric cancer samples of the 
TCGA-STAD dataset were estimated by using the CIB-
ERSORT and XCELL algorithms [98]. It was found that 
the overexpression of Hub FRGs (MYB, PSAT1, TP53 
and LONP1) were positively correlated with the infiltra-
tion of activated  CD4+ T cells, especially Th cells [98]. 
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It is suggested that effective intervention on Hub FRGs 
is helpful to promote the activation of  CD4+ T cells in 
patients with GC and to improve the efficacy of immuno-
therapy. In addition, researchers have found that the high 
expression of another key enzyme of SGOC metabolism 
(PSPH) was negatively correlated with  CD8+ T cells, 
macrophages, and neutrophils, thus affecting the survival 
of patients with neuroblastoma [99]. Similarly, SHMT2 
was significantly associated with  CD8+ T cell infiltrates 
and highly expressed in breast, liver and lung cancer, and 
kidney renal papillary cell carcinoma [100]. These data 
suggested that PSPH and SHMT2 may be a promising 
indicator of the prognosis and cancer immunotherapy by 
affecting the infiltration level of immune cells. In bladder 
cancer, high expression of MTHFD2 was associated with 
PD-L1 activation via the PI3K/AKT signaling pathway, 
suggesting that it could be a promising marker of cancer 
immunotherapy [101].

Serine‑glycine‑one‑carbon metabolism 
in ferroptosis
Ferroptosis is a newly discovered form of programmed 
cell death, that is the result of excessive oxidation of 
iron-dependent polyunsaturated fatty acids [102, 103]. 
The three key characteristics of ferroptosis include 

membrane lipid peroxidation, availability of intracellu-
lar iron, and loss of antioxidant defense [104]. PHGDH, 
as the first rate-limiting enzyme of the SGOC metabolic 
pathway, plays an important role in ferroptosis-related 
pathways. Researchers have found that PHGDH can 
bind to the RNA-binding protein PCBP2 and inhibit its 
ubiquitination degradation; subsequently, PCBP2 sta-
bilized SLC7A11 mRNA and increased its expression, 
thus inhibiting ferroptosis (Fig. 2) [105]. In gastric cancer, 
PSAT1 was identified as a ferroptosis-related gene and a 
new potential biomarker, papillary renal cell carcinoma 
and amyotrophic lateral sclerosis [98, 106, 107]. In liver 
cancer, the overexpression of c-Jun can activate the tran-
scription of PSAT1 by directly binding with its promoter 
region, thereby antagonizing the ferroptosis induced by 
erastin [108]. In triple-negative breast cancer, MTHFD2 
was identified as a ferroptosis regulator and prognostic 
biomarker [109].

Small molecular substances or metabolic pathways 
are also recognized as important influencing factors 
of ferroptosis. The amino acid glutamine was identi-
fied as the inducers of ferroptosis; and the glutamine-
fueled intracellular metabolic pathway, glutaminolysis, 
was identified as the essential component of ferropto-
sis [110]. Homocysteine is an amino acid involved in 

Fig. 2 The roles of serine-glycine-one-carbon metabolism in tumors
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gene methylation and can be generated by the SGOC 
metabolic pathway [111]. It was found that homocyst-
eine promotes a degenerative cell phenotype (involving 
increased oxidative stress and cell death by ferroptosis) 
mediated by upregulated methylation of GPX4 [112].

Serine‑glycine‑one‑carbon metabolism 
and noncoding RNAs
PSAT1 and noncoding RNAs
Long noncoding RNAs (lncRNAs) can epigenetically 
regulate gene expression and cellular signaling path-
ways in different types of cancers [113, 114]. Accumu-
lating evidence shows that lncRNAs are interlinked 
with PSAT1 and play a major role in cancer cell pro-
liferation, angiogenesis and invasion [114–116]. The 
lncRNA RP4-694A7.2 levels in HCC tissues are higher 
than those in normal liver tissues and RP4-694A7.2 
is also highly expressed in HCC cell lines [114]. RP4-
694A7.2 regulates the glycolytic function of PSAT1 
during HCC cell growth and invasion via the GSK3β/
β-catenin pathway [114]. Interestingly, lncRNA MEG3 
exerts tumor-suppressive effects and inhibits Epithe-
lial-mesenchymal transition (EMT) by suppressing the 
PSAT1-dependent GSK3β/Snail signaling pathway in 
esophageal squamous cell carcinoma (ESCC) [115]. In 
NSCLC, the lncRNA MEG8 is expressed at higher lev-
els in tumor tissues than in normal adjacent tissues and 
promotes tumor progression by regulating the miR-
15a/b-5p/PSAT1 axis [117]. In addition, the lncRNA 
BC200 promotes the migration and invasion of cancer 
cells via the regulation of ATF4 expression, which in 
turn regulates the expression of PSAT1 in ESCC [116] 
(Fig. 3).

Abnormal expression of miRNAs plays an important 
role in the development of various cancers. In ESCC, the 
expression of miR-340 is negatively correlated with that 
of PSAT1 and significantly lower in tumor tissues than in 
paraneoplastic tissues [118]. Moreover, the high expres-
sion of miR-365 inhibits cell proliferation, invasion, 
colony formation and EMT and these inhibitions are 
reversed by the overexpression of PSAT1 [119]. In CRC, 
miR-424 directly inhibits PSAT1 expression at the tran-
scriptional level, thereby supressing cell proliferation and 
inducing apoptosis [120]. In ovarian cancer, the overex-
pression of miR-195-5p reduces cisplatin resistance and 
angiogenesis by inhibiting PSAT1-dependent GSK3β/β-
catenin [121]. Interestingly, miR-15a/b-5p is also regu-
lated by the lncRNA MEG8 and affects the proliferation, 
migration and invasion of NSCLC cells through the 
downregulation of PSAT1 expression [117]. In summary, 
PSAT1 may provide a more effective therapeutic strategy 
for cancer treatment.

SHMT and noncoding RNAs
The overexpression of the lncRNA Gm15290 exerts 
tumor-stimulating effects through the inhibition of miR-
615-5p, which targets the genes insulin-like growth fac-
tor 2 (IGF2), AKT2, and SHMT2 [122, 123]. In colon 
cancer, LINC01234 is highly expressed and acts as a 
competing endogenous RNA for miR-642a-5p, which tar-
gets SHMT2 [124]. Furthermore, miR-6778-5p positively 
regulates SHMT1, thus mediating compensatory activa-
tion of cytoplasmic one-carbon metabolism, which plays 
an essential role in the maintenance of gastric cancer 
stem cells (GCSCs) [125]. The deletion of miR-6778-5p 
or SHMT1 significantly reduces GCSC sphere forma-
tion and increases 5-FU sensitivity in Drosha-knockdown 
cells [125]. In lung cancer, miR-198 inhibits cell prolif-
eration in vitro and in vivo by directly targeting SHMT1 
[126]. In addition, miR-218-5p suppresses the cytotoxic 
effect of natural killer cells by targeting SHMT1 in lung 
cancer [127]. In addition, the circRNA circ_0072995 
was demonstrated to promote a malignant phenotype 
and anaerobic glycolysis by competitively binding miR-
149-5p to upregulate its downstream gene SHMT2 in 
breast cancer [128].

MTHFD2 and noncoding RNAs
MTHFD2 has been confirmed to be a target gene of 
miR-33a-5p that suppresses CRC cell growth by inhibit-
ing MTHFD2 [129]. In acute myeloid leukemia (AML), 
miR-92a inhibits cell proliferation and induces apoptosis 
by directly suppressing MTHFD2 expression [130]. The 
high-expression of miR-504-3p is associated with good 
prognosis in AML patients and may serve as a tumor 
suppressor by targeting MTHFD2 [131]. In breast can-
cer, miR-9 exerts anti-proliferative, anti-invasive and 
proapoptotic effects by targeting MTHFD2 [132]. Inter-
estingly, the lncRNA taurine upregulated gene 1 (TUG1) 
was found to negatively regulate miR-9 expression but 
positively regulate the expression of MTHFD2 in breast 
cancer cells [133]. In glioma, miR-940 suppresses tumor 
progression by inhibiting mitochondrial folate metabo-
lism, which directly targets MTHFD2 [134]. In gastric 
cancer, miR-22 inhibits cell proliferation by inducing a 
deficiency in endogenous SAM by reducing MTHFD2 
and MTHFR expression [135]. In head and neck squa-
mous cell carcinoma (HNSCC), low expression of miR-
99a-3p, which targets MTHFD2, significantly predicts 
poor prognosis [136]. These results indicate that miRNAs 
targeting MTHFD2 regulate tumor progression and may 
be new biomarkers.

Red font, Promoting the expression of targeted SGOC 
metabolic enzymes; Green font, Inhibiting the expression 
of targeted SGOC-metabolic enzymes.



Page 8 of 17Sun et al. Biomarker Research           (2023) 11:48 

Therapeutic targeting 
of serine‑glycine‑one‑carbon metabolic enzymes
Inhibitors of enzymes in serine‑glycine biosynthesis
PHGDH inhibitors can be divided into two main types: 
synthetic and natural chemicals (Table  1). The syn-
thetic chemicals include BI-4924, CBR-5884, NCT-503, 
PKUMDL-WQ-2201 and so on [165, 138]. The natural 
chemicals include azacoccone E and ixocarpalactone A 
[141, 142] Researchers have found that the most effective 
PSPH inhibitor using L-phosphoserine as the substrate is 
p-chloromercuriphenylsulfonic acid (CMPSA), followed 
by Glyceryl phosphocholine [144]. Moreover, clofazimine 
is a specific inhibitor of PSPH [143]; D-AP3 is selective 
and is the most effective competitive inhibitor of PSPH 

[166]. As an SHMT inhibitor, the compound SHIN1 with 
the pyrazolopyran scaffold exerts potent and specific on 
target activity against SHMTs [36]. In addition to hav-
ing selective activity against SHMT1, compound 2.12 
also displayed anticancer activity in the mid-micromolar 
range [147]. AGF347, a folate mimetic, exerts significant 
in  vivo anti-tumor effect, providing the candidates for 
therapeutic targeting of SHMTs [146].

Inhibitors of enzymes in one‑carbon metabolism
One-carbon metabolism supports vital events for the 
growth and survival of proliferating cells whose enzymes 
are associated with cancer progression [72, 100, 167]. 
Aminopterin is an anti-folate drug that has been found 

Fig. 3 The SGOC metabolic enzymes and regulatory non-coding RNA
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Table 1 Small-molecule inhibitors of SGOC metabolism

Target enzymes Inhibitor Structure Comments Indication/most advanced 
clinical phase

Refs

PHGDH BI-4924 Competitive inhibitor Experimentala and cancer/
preclinical

[137]

PHGDH CBR-5884 Inhibition of de novo serine 
synthesis

Experimentala and cancer/
preclinical

[138]

PHGDH NCT-503 Inhibition of de novo serine 
synthesis

Experimentala and cancer/
preclinical

[139]

PHGDH PKUMDL-WQ-2201 PHGDH allosteric inhibitor Experimentala and cancer/
preclinical

[140]

PHGDH Azacoccone E Non-competitive inhibitor Cancer and other diseases /
preclinical

[141]

PHGDH Ixocarpalactone A PHGDH allosteric inhibitor Cancer and other diseases /
preclinical

[142]

PSPH Clofazimine Competitive inhibitor FDA approved treatment for 
leprosy and tuberculosis

[143]

PSPH Glycerophosphoryl-
choline

Non-competitive inhibitor Clinical Trials, Dementia/
preclinical

[144]

SHMTs SHIN1 Inhibition of glycine and 
 CH2-THF generation

Cancer and other diseases /
preclinical

[145]

SHMT1/2
GART 

AGF347 Inhibition of glycine and 
 CH2-THF generation

NSCLC, colon,
Pancreatic/ preclinical

[146]

SHMT1/2 2.12 Competitive inhibitor Lung cancer/ preclinical [147]

MTHFD2 LY345899 Induction of apoptosis 
through reduced mitochon-
drial NADP(H) generation

Colorectal cancer/preclinical [148]

MTHFD1/2 Carolacton Inhibition of both substrate 
and cofactor binding in 
active site

Colon, endocervical cancer 
cell/preclinical

[149]
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Table 1 (continued)

Target enzymes Inhibitor Structure Comments Indication/most advanced 
clinical phase

Refs

TYMS
DHFR
GART 

Pemetrexed Inhibition of cell proliferation 
by limiting thymidylate for 
DNA synthesis

Various solid and hemato-
logical tumors/Approved

[150]

TYMS, DHFR Methotrexate Induction of cell death by 
depleting THF levels

FDA- approved for rtheuma-
toid arthritis,
and neoplastic diseases
Osteosarcoma Phase II

[151]

TYMS 5-FU Inhibition of DNA synthesis 
by blocking conversion of 
dUMP to dTMP

Various solid and hemato-
logical tumors/Approved

[152]

FOLR1 Farletuzumab Monoclonal antibody of IgG1κ Competitive inhibitor Ovarian cancer/
Phase I
Phase II
Phase II

[153–155]

DHFR Trimetrexate Inhibition of the production 
of DNA and RNA precursors 
and lead to cell death

Bacterial infection、cancers/ 
Phase II

[156]

DHFR/ TYMS Raltitrexed Reduction of dTMP level, and 
increase of dUMP level

Approved by European 
Medicines Agency (EMA) 
to treat colorectal cancer/
Phase IV
HNSCC
Phase IV

[157]

DHFR Piritrexim Direct inhibition of DNA 
incorporation of deoxyur-
idine nucleoside

Bladder cancer/Phase II [158]

TYMS ZD-9331  A water-soluble non-
polyglutamatable TYMS 
inhibitor

Ovarian cancer/Phase II [159]

TYMS GS7904L Inhibition of DNA synthesis 
by blocking conversion of 
dUMP to dTMP

Colorectal cancer/Phase I, 
HNSCC/Phase II, Advanced 
Solid Tumors/Phase I, Gastric 
cancer /Phase II, Locally 
Advanced or Metastatic 
Adenoma of the Biliary Tract/
Phase II

[160]

TYMS ONX-0801  A cyclopenta[g]quinazo-
line-based inhibitor

Advanced Solid Tumors /
Phase I

[161]
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to relieve childhood acute lymphoblastic leukemia (ALL) 
[168]. Based on this discovery, a series of one-carbon-
metabolism-targeted drugs have been developed, includ-
ing methotrexate, pemetrexed, and 5-FU, which are of 
great significance in cancer treatment, especially immu-
notherapy [93, 169–177]. Ly345889 is the first synthetic 
inhibitor of MTHFD1/2 [148]. Subsequently, research-
ers found that carolacton, which is a macrolide ketone 
carbonic acid, inhibits folic acid-dependent one-carbon 
metabolism by targeting MTHFD1/2, and its inhibitory 
activity is higher than that of Ly345889 [149]. DHFR and 
TYMS were the early enzymes of one-carbon metabo-
lism to be clinically validated as targets for cancer ther-
apy and remain the most successful in this context to 
date, and almost all Food and Drug Administration 
(FDA)-approved DHFR and TYMS inhibitors are clas-
sical or non-classical folate derivatives [178]. There are 
also several compounds targeting these two enzymes in 
the clinical trial pipeline: Trimetrexate [156], Raltitrexed 
[157], Piritrexim [158], ZD-9331 [159], GS7904L [160], 
and ONX-0801 [161]. Folate transporters play impor-
tant roles in the efficacy of anti-folate chemotherapies 
[179]. Farletuzumab is a monoclonal antibody specifi-
cally targeting folate receptor beta (FOLR1) [180, 181]. 
Despite encouraging preclinical data, farletuzumab has 
not successfully completed the Phase III trial [180]. The 
biosynthesis of purines is carried out by purinosome and 
requires phosphoribosylglycinamide formyltransferase 
(GART) [182]. Lometrexol has the strongest inhibitory 
effect on GART, which is in clinical trials [163, 183]. 
Moreover, the methionine cycle is crucial for one-carbon 
metabolism because the one-carbon unit is transferred 
to S-adenosyl-l-homocysteine (SAH) to form SAM in 
this process, which is necessary for many life activities 
[184]. AG-270, targeting methionine adenosyltransferase 

2 A (MAT2A) in the methionine cycle, is currently in a 
cinical trial (NCT03435250) [162]. Cystathionine beta-
synthase (CBS) is the first rate-limiting enzyme in the 
transsulfuration pathway and play vital roles in the 
occurrence, development, and treatment of cancer [185]. 
As a classical inhibitor of CBS, aminooxyacetic acid is the 
most common, but it also inhibits cystathionine gamma-
lyase (CSE), which is another enzyme in the transsulfura-
tion pathway [164].

In summary, the investigation of inhibitors of SGOC 
metabolism will help to clarify the role of one-carbon 
metabolism in different stages of cancer progression 
and to verify whether one-carbon metabolism is the 
right pathway to drugs for cancer treatment. The newer 
generation of drugs selectively targeting key metabolic 
enzymes in SGOC metabolism, such as PHGDH, MTH-
FDs, DHFR, TYMS, GART and CBS, will provide a new 
strategy for cancer treatment in the future.

Conclusion and prospects
More than 70 years ago, Faber and his colleagues found 
that folic acid can stimulate the proliferation of acute 
lymphoblastic leukemia cells, and used aminopterin to 
induce clinical remission in patients [168]. At later time 
periods, more drugs targeting the one-carbon metabolic 
pathway were found, such as the folic acid metabolism 
and thymidine acid synthesis inhibitors: methotrex-
ate and 5-Fu, which are among the first successful can-
cer treatments [186]. These drugs are still used to treat 
various cancers. When the PHGDH-specific inhibitor 
NCT-503 or shRNA was used to inhibit PHGDH expres-
sion, the antitumor effect of doxorubicin in TNBC was 
significantly improved in vivo and in vitro [187]. In addi-
tion, pemetrexed could increase the activation of T cells 
in mouse tumors in vivo and exerted the inherent effect 

Table 1 (continued)

Target enzymes Inhibitor Structure Comments Indication/most advanced 
clinical phase

Refs

MAT2A AG-270 Allosteric inhibitors Advanced Solid Tumors and 
Lymphoma/Phase I

[162]

GART Lometrexol Inhibition of de novo purine 
synthesis

Lung Cancer/Phase I [163]

CBS/CSE aminooxyacetic acid Inhibition of aspartate ami-
notransferase activity

Experimentala and cancer/
preclinical

 [164]
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of T cells in vitro; moreover, combined with PD-1 path-
way blockade, pemetrexed enhanced the anti-tumor 
effect [93]. These evidences indicate that the inhibition 
of specific enzymes in SGOC metabolism can be a more 
effective mechanism for synergistic treatment of drug 
resistance and enhancing tumor immunotherapy.

To generate enough one-carbon unit to meet their own 
proliferation needs, tumor cells usually increase their 
intake of extracellular serine, glycine and other raw mate-
rials [48, 52]. Therefore, limitations of serine and glycine 
in the diet may be a good treatment strategy [21]. Tumors 
with amplified SGOC metabolic enzymes are unlikely to 
be affected by exogenous serine consumption, and p53 
deletion may aggravate this dependence [20]. This sce-
nario may be due to the impaired transformation between 
glycolysis and oxidative phosphorylation when p53 is 
deficient, thus resulting in insufficient ATP production 
[22]. It has been found that the growth rate of tumors and 
the final volume of tumors in mice treated with a serine- 
or glycine-deficient diet combined with metformin sig-
nificantly decreased [188]. The mechanism may be that 
serine deficiency can inhibit the compensatory increase 
in the metformin induced glycolysis pathway. Therefore, 
the identification of metabolic dependencies related to 
the environment may help to identify tumor types that 
may benefit from existing approved therapies and can be 
more easily reused for new applications [8, 189].

SGOC metabolism not only serves as precursors to 
protein synthesis, but also provides one-carbon pre-
cursors for nucleotide synthesis, as well as head groups 
for sphingolipid and phospholipid synthesis [18, 44]. It 
seems that many cancer cells depend on the availabil-
ity of one-carbon unit to some extent, which indicates 
that the limitation of one-carbon unit supply can have 
more therapeutic benefits. This review comprehensively 
analyzes the expression pattern and metabolic flux of 
the SGOC pathway in multiple cancer backgrounds at 
the system level and to describe the possible role of the 
SGOC metabolic network in tumor immunotherapy 
and ferroptosis. It is expected that new research and 
more effective and specific compounds may provide 
much-needed breakthroughs in targeting this pathway 
against cancer.
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