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Abstract
Background Lung cancer remains the leading cause of cancer mortality worldwide. Early detection of lung cancer 
helps improve treatment and survival. Numerous aberrant DNA methylations have been reported in early-stage lung 
cancer. Here, we sought to identify novel DNA methylation biomarkers that could potentially be used for noninvasive 
early diagnosis of lung cancers.

Methods This prospective-specimen collection and retrospective-blinded-evaluation trial enrolled a total of 317 
participants (198 tissues and 119 plasmas) comprising healthy controls, patients with lung cancer and benign 
disease between January 2020 and December 2021. Tissue and plasma samples were subjected to targeted 
bisulfite sequencing with a lung cancer specific panel targeting 9,307 differential methylation regions (DMRs). DMRs 
associated with lung cancer were identified by comparing the methylation profiles of tissue samples from patients 
with lung cancer and benign disease. Markers were selected with minimum redundancy and maximum relevance 
algorithm. A prediction model for lung cancer diagnosis was built through logistic regression algorithm and validated 
independently in tissue samples. Furthermore, the performance of this developed model was evaluated in a set of 
plasma cell-free DNA (cfDNA) samples.

Results We identified 7 DMRs corresponding to 7 differentially methylated genes (DMGs) including HOXB4, HOXA7, 
HOXD8, ITGA4, ZNF808, PTGER4, and B3GNTL1 that were highly associated with lung cancer by comparing the 
methylation profiles of lung cancer and benign nodule tissue. Based on the 7-DMR biomarker panel, we developed 
a new diagnostic model in tissue samples, termed “7-DMR model”, to distinguish lung cancers from benign diseases, 
achieving AUCs of 0.97 (95%CI: 0.93-1.00)/0.96 (0.92-1.00), sensitivities of 0.89 (0.82–0.95)/0.92 (0.86–0.98), specificities 
of 0.94 (0.89–0.99)/1.00 (1.00–1.00), and accuracies of 0.90 (0.84–0.96)/0.94 (0.89–0.99) in the discovery cohort 
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Introduction
Lung cancer remains the leading cause of cancer mortal-
ity worldwide so far. In 2020, 2.2 million new cases were 
found globally and 1.8  million were dead, representing 
18.0% of all cancer deaths [1]. Data suggest that around 
68-92% of patients survive at least 5 years when diag-
nosed at the earliest stage, but this falls to just 10% for 
those diagnosed with the most advanced disease (stage 
IV) [2]. In most people, the cancer has already spread 
beyond its original site to a distant part of the body by 
the time they have symptoms and seek medical care. 
Early detection of lung cancer helps to improve treat-
ment and survival [3].

Low-dose Computed Tomography (CT) is commonly 
used for detection of pulmonary nodules, but the ambig-
uous risk evaluation often causes overdiagnosis. Numer-
ous antigens in the blood have been investigated for 
years as potential biomarkers of lung cancer. The most 
intensively studied biomarkers include cytokeratin 19 
fragment (CYFRA 21 − 1) [4], carcinoembryonic anti-
gen (CEA) [5], neuron specific enolase (NSE) [6], and 

squamous cell carcinoma antigen (SCC-Ag) [7]. But the 
performances of those biomarkers for early diagnosis are 
unsatisfactory due to the low sensitivity. Accordingly, it is 
highly desirable to find effective and specific diagnostic 
biomarkers for early-stage lung cancer.

Plenty of studies have shown that DNA methylation 
is strongly related to the occurrence and progression of 
various tumors [8]. DNA methylation is an epigenetic 
modification of genes involving the covalent transfer of 
S-adenosylmethionine as methyl group donor to the C-5 
position of the cytosine ring of DNA to form 5-meth-
ylcytosine by catalysis of DNA methyltransferases [9]. 
According to the reported studies, extensive DNA hypo-
methylation was found in the whole genome of tumor 
cells, leading to the activation of proto-oncogenes and 
increased genomic instability [10]. The methylation sta-
tus of tumor cells in the promoter regions of tumor 
suppressor genes and repair genes is increased, that is, 
hypermethylation, which leads to the inhibition of the 
expression of corresponding tumor suppressor genes [11, 
12]. The hypermethylated genes of tumor cells mostly 

(n = 96) and the independent validation cohort (n = 81), respectively. Furthermore, the 7-DMR model was applied to 
noninvasive discrimination of lung cancers and non-lung cancers including benign lung diseases and healthy controls 
in an independent validation cohort of plasma samples (n = 106), yielding an AUC of 0.94 (0.86-1.00), sensitivity of 0.81 
(0.73–0.88), specificity of 0.98 (0.95-1.00), and accuracy of 0.93 (0.89–0.98).

Conclusion The 7 novel DMRs could be promising methylation biomarkers that merits further development as a 
noninvasive test for early detection of lung cancer.
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occur in CpG islands in the promoter region, while the 
CpG islands in the promoter region of normal cells are 
mostly in a non-methylated state [8]. Aberrations in 
DNA methylation are found at the genomic level in most 
tumors, including lung cancer, as well as in patients with 
non-neoplastic diseases such as Alzheimer’s disease and 
heart failure [13, 14]. Many studies have found that dif-
ferent diseases and even different stages of a disease may 
have specific methylation patterns [15]. The frequency 
of CpG island hypermethylation in tumor cells is much 
higher than that of gene mutation [16]. Therefore, by 
detecting the methylation level of a specific set of genes 
or the whole genome, it is possible to predict the risk of 
lung cancer [17–19].

In this study, based on our DNA methylation sequenc-
ing data, we identified seven novel methylation bio-
markers by comparing the methylation profiles of tissue 
samples from lung cancer and benign lung disease for 
early diagnosis of lung cancer. Based on the 7-DMR bio-
marker panel, we constructed a new diagnostic model 
that could predict the malignant risk of lung cancer 
based on blood samples and could be further developed 
as a noninvasive diagnostic test.

Methods
Participating patients and Sample Collection
A total of 317 subjects were recruited, including 50 
healthy controls with matched age and gender, and 267 
patients with lung nodule indicated by CT/LDCT scan 
at The First Affiliated Hospital of Soochow University in 
China from Jan 2020 to Dec 2021. All enrolled patients 
with lung diseases were at high risk of lung cancer and 
thus had undergone surgical resection. None of patients 
received any preoperative cancer therapies. 10 mL of 
peripheral blood was collected from eligible patients 1–3 
days prior to surgical operation. Formalin-fixed paraf-
fin embedded (FFPE) tissue samples were obtained from 
subsequently surgical resections. Pathological informa-
tion of all samples was determined based on surgically 
resected tissue sections according to 2015 WHO His-
tological Classification of Lung Cancer [20]. Written 
informed consents were provided by all participants. This 
study was approved by the Ethical Committees of The 
First Affiliated Hospital of Soochow University.

As additional detail on methods of tissue/blood sam-
ple processing, targeted cell-free DNA methylation 
sequencing, and sequencing data analysis are provided 
in an online data supplement.

Differential methylation analysis
Differential methylation analysis was conducted using R 
package DSS (version 2.14.0) [21]. Differentially meth-
ylated CpGs (DMCs) were first identified (criteria: 
FDR < 0.05, delta > 0.05), and then adjacent DMCs were 

merged into DMRs. The DMR required at least 3 CpG 
sites and the distance between nearby CpG sites was not 
more than 100 base pairs. DMRs were intersected with 
protein-coding genes (hg19 Ensembl (v75), n = 20,232) by 
using annovar [22].

Unsupervised hierarchical clustering of DNA methylation 
profiles
The methylation profiles of tissue samples in discovery 
cohort and independent validation cohort obtained with 
our custom-made methylation panel consisting of 9307 
informative lung cancer DMRs were used for unsuper-
vised hierarchical clustering. The methylation level of 
each targeted regions was calculated as the ratio of the 
methylated CpGs and the total sequenced CpGs (sum of 
methylated and unmethylated CpGs). Before clustering, 
the methylation level of each targeted region was Z-score 
normalized. To calculate the Z-score of each targeted 
region for each sample, we subtracted its mean from 
each of the samples and divided the result by its standard 
deviation. The R function “hclust” was used to perform 
hierarchical clustering with “ward.D2” as the clustering 
algorithm. R package pheatmap was used to plot the heat 
map after hierarchical clustering.

Diagnostic marker selection
The machine learning task was conducted with the inten-
tion to identify a DNA methylation biomarker panel for 
accurate diagnosis of early-stage lung cancer. We first 
filtered DMRs for a maximum of 30% of coefficient of 
variation calculated from analytical replicates (quality 
assessment samples) to ensure good analytical reproduc-
ibility of the selected DMRs. We then performed marker 
selection using a Python implementation (https://github.
com/smazzanti/mrmr) of the minimum redundancy and 
maximum relevance (mRMR) feature selection algo-
rithm. We examined the relationship between model 
performance and number of features (from 1 to 10) based 
on fivefold, ten times cross-validation in the discovery 
cohort. We limited the maximum number of features to 
10 out of practical considerations: a marker panel based 
on a relatively small set of DMRs may be easier to trans-
late and implement into clinical practice. We then deter-
mined the optimal number of features (or marker panel) 
according to the ‘maximal AUC score using the minimal 
set of DMRs’ principle.

Gene Ontology Enrichment Analysis and Pathway 
Enrichment analyzes for diagnostic biomarkers
KEGG (Kyoto Encyclopedia of Genes and Genomes) 
pathway analysis and GO (Gene Ontology) pathway anal-
ysis were conducted by the clusterProfiler R package.

https://github.com/smazzanti/mrmr
https://github.com/smazzanti/mrmr
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Analysis of gene expression with TCGA data
Gene expression data were downloaded from the cancer 
genome atlas (TCGA) database (https://portal.gdc.can-
cer.gov/). Gene expression data of Lung Adenocarcinoma 
(LUAD) (59 normal, 535 cancer) and Lung Squamous 
Cell Carcinoma (LUSC) (49 normal, 502 cancer) can-
cer tissues and adjacent tissues were collected. The gene 
expressions of HOXB4, B3GNTL1, ZNF808, HOXD8, 
ITGA4, PTGER4, and HOXA7 were compared between 
lung cancer tissue and adjacent normal tissue.

Performance evaluation of 7 candidate diagnostic 
biomarkers in TCGA data
DNA methylation datasets in which methylation level of 
each CpG site was denoted by beta value were retrieved 
from the cancer genome atlas (TCGA) database (https://
portal.gdc.cancer.gov/). The DNA methylation level of 
HOXB4, B3GNTL1, ZNF808, HOXD8, ITGA4, PTGER4, 
and HOXA7 in Lung Adenocarcinoma (31 normal, 473 
cancer) and Lung Squamous Cell Carcinoma (42 nor-
mal, 370 cancer) cancer tissues and adjacent tissues were 
collected.

Construction of 7-DMR model
First, to evaluate diagnostic performance of the 7-DMR 
methylation panel for classifying lung cancer tissue 
samples, a predictive model was developed by fitting a 
logistic regression model using the 7 DMRs in the dis-
covery cohort as the input. Python’s scikit-learn pack-
age (v0·20·0) was used to perform the logistic regression 
with default parameters: penalty = l2, tol = 1e-4, C = 1.0, 
fit_intercept = True, class_weight = None, solver = lbfgs, 
max_iter = 100. Then, to test the discriminative power of 
the 7-DMR methylation panel for the noninvasive detec-
tion of early-stage lung cancer with cell-free DNA from 
plasma samples, all tissue samples were pooled to con-
struct a predictive model with logistic regression. The 
model was then applied to a plasma cohort consisting of 
patients with lung cancer and benign diseases, as well as 
healthy controls.

Statistical analyses
All statistical analyses were conducted using R software 
(v3.32). Continuous variables were presented as means 
and standard deviations or medians and ranges, while 
categorical variables were presented as whole numbers. 
Continuous variables were compared using Student’s t 
test, while categorical variables were compared using the 
chi-square test. 95% confidence intervals (CI) for AUC, 
sensitivity, specificity, accuracy of the models was calcu-
lated using a binomial distribution. Receiver operating 
characteristic (ROC) analysis was performed using the 
pROC R package (v1.15.3). Unless otherwise specified, all 

statistical tests were conducted using a two-sided alpha 
level of 0.05.

Results
Clinical cohorts
We collected a total of 198 tissue samples that were used 
to find differential DNA methylation biomarkers for early 
diagnosis of lung cancer. 21 subjects were excluded due 
to inadequate DNA after extraction (n = 15) and failed 
sequencing (n = 6). Consequently, 96 samples (80 lung 
cancers, 16 benign lung diseases) were used for 7-DMR 
model discovery cohort and the remaining 81 samples 
(64 lung cancers, 17 benign diseases) were used as an 
independent validation cohort. In total, 119 plasma sam-
ples were collected to evaluate the performance of the 
diagnostic model. 13 were excluded due to inadequate 
DNA or failed sequencing and the rest 106 subjects (26 
lung cancers, 30 benign diseases, 50 healthy controls) 
were included for subsequent analysis (Fig.  1). There 
was no statistically significant difference in age among 
all three cohorts. The cohorts contained 88.2% of early-
stage patients (stages 0/I) for identifying features corre-
lated with early-stage lung cancer. 71.4% of all were never 
smokers. The patient demographic and clinical charac-
teristics were summarized in Table 1.

Identification of differential methylation regions for lung 
cancer diagnosis
By comparing the methylation profiles of tissue sam-
ples between lung cancer and benign lung disease, 6604 
hypermethylated and 2703 hypomethylated DMRs were 
found (Fig.  2a-b), corresponding to 2614 hypermethyl-
ation and 1228 hypomethylated genes. The abnormal 
methylation regions were predominantly located at the 
intron, intergenic, and exon regions (Fig. 2c), and highly 
enriched in CpG island, promoter, CTCF binding site, 
promoter flanking region, and TF binding site (Fig. 2d). 
This was consistent with the general characteristics of 
aberrant DNA methylation in solid tumors. KEGG path-
way analysis indicated that the following pathways were 
closely associated with the genes: Regulation of actin 
cytoskeleton, Non-small cell lung cancer, Wnt signaling 
pathway, Axon guidance, Hippo signaling pathway, etc. 
(Figure S1). Meanwhile, GO enrichment pathway analysis 
shown that a variety of cellular components, molecular 
functions and biological processes may be involved, espe-
cially the axon part, DNA-binding transcription activa-
tor activity, and embryonic organ morphogenesis (Figure 
S2a-c).

Identification of candidate methylated biomarkers for lung 
cancer diagnosis
Then we used the minimum redundancy and maxi-
mum relevance (mRMR) algorithm to assess the 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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predictive power of each DMR and finally selected the 
most significant 7 DMRs: chr17:46655603–46,655,750, 
chr7:27195684–27,195,794, chr2:176993563–
176,993,743, chr2:182322423–182,322,574, 
chr19:53038958–53,039,010, chr5:40681077–40,681,250, 
and chr17:80943984–80,944,093. The genes corre-
sponding to these 7 methylation regions were HOXB4, 
HOXA7, HOXD8, ITGA4, ZNF808, PTGER4, and 
B3GNTL1 (Table  2). To investigate the correlation 
between the seven differential methylation regions and 
progression of lung cancer, we compared the expres-
sion of these seven corresponding genes in lung cancer 
and normal controls based on TCGA gene expression 
data, which contained LUAD (59 normal, 535 cancer) 
and LUSC (49 normal, 502 cancer). It turned out that 
the expressions of B3GNTL1 and HOXD8 were signifi-
cantly upregulated, while the expression of remaining five 
genes (HOXB4, ZNF808, ITGA4, PTGER4, and HOXA7) 
were significantly downregulated in lung cancer tissues 
(p < 0.01) (Fig. 3a). This revealed the potential biological 
and clinical significance of the seven genes in the forma-
tion of lung cancer.

To test the diagnostic capabilities of seven markers in 
distinguishing between lung cancer and normal controls, 
we analyzed the performance of seven DMRs individu-
ally based on TCGA database that included LUADs (31 
normal, 473 cancer) and LUSCs (42 normal, 370 cancer). 
Regarding the LUAD, all the 7 markers achieved AUCs 
varied from 0.90 to 0.97. While for the LUSC, the mod-
els of PTGER4 and B3GNTL1 reached AUCs of 0.75 
(95%CI: 0.70–0.79) and 0.77 (0.73–0.81), respectively. 
ITGA4 and HOXB4 yielded AUCs of 0.86 (0.81–0.90) 
and 0.82 (0.78–0.86), respectively. The remaining mark-
ers (HOXA7, HOXD8, ZNF808) achieved AUCs greater 
than or equal to 0.94 (Fig. 3b). Collectively, this suggested 
that the 7 DMRs had excellent performance and merited 
further investigation.

Evaluation of the accuracy of Diagnostic model based on 
tissues
Next, we built a diagnostic model based on the panel 
of seven DMRs, namely 7-DMR model, using a train-
ing set of 80 lung cancer and 16 benign lung disease tis-
sues. Accuracy of model in tissues was tested through the 

Fig. 1 Flowchart for finding lung cancer candidate diagnostic biomarkers. Total 317 patients enrolled. 7-DMR model was developed on 96 tissue 
samples and independently validated on 81 tissue samples. The noninvasive diagnostic performance of 7-DMR model was evaluated in 106 plasma 
samples.
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validation set of 64 lung cancers and 17 benign diseases. 
Our model achieved an AUC of 0.97 (0.93-1.00), sensi-
tivity of 0.89 (0.82–0.95), specificity of 0.94 (0.89–0.97), 
and accuracy of 0.90 (0.84–0.96) in the discovery cohort 
and an AUC of 0.96 (0.92-1.00), sensitivity of 0.92 (0.86–
0.98), specificity of 1.00 (1.00–1.00), and accuracy of 0.94 
(0.89–0.99) in the independent validation cohort (Fig. 4a-
c; Table 3). Unsupervised hierarchical clustering of these 
7 markers was able to distinguish lung cancers from 

benign lung diseases with high specificity and sensitivity 
(Fig. 4d-e).

Evaluation of the accuracy of Diagnostic model in plasma
Ideal biomarkers are expected to be detected non-inva-
sively in biological fluids, we further tested the accuracy 
of 7-DMR model in 106 plasma samples. Consistent with 
the performance in tissue samples, the 7-DMR model 
achieved AUCs of 0.93 (0.86-1.00) in lung cancers vs. 
benign diseases, and 0.94 (0.86-1.00) in lung cancers vs. 
healthy controls. Incorporating the benign diseases and 
healthy controls as non-cancer group, the 7-DMR model 
still maintained stable diagnostic performance with an 
AUC of 0.94 (0.86-1.00), sensitivity of 0.81 (0.73–0.88), 
specificity of 0.98 (0.95-1.00), and accuracy of 0.93 
(0.89–0.98) (Fig.  5a-b; Table  3). The precise diagnostic 
capability of the seven DMRs was also confirmed by the 
unsupervised hierarchical clustering among lung cancer, 
benign disease, and healthy control (Fig. 5c).

Discussion
At present, the incidence of lung cancer and other can-
cers has risen sharply [23]. Although traditional patho-
logical examination is still the gold standard for the 
diagnosis of various tumors, an accurate, non-invasive, 
and rapid diagnostic test is urgently needed in clinical 
practice. Numerous efforts have been devoted to search-
ing for effective biomarkers. As aberrant DNA methyla-
tion patterns have been identified in lung cancer, DNA 
methylation biomarkers have been intensively investi-
gated as potential diagnostic markers to detect early-
stage lung cancer [24]. As early as 2005, Schmiemann 
V et al. discovered the abnormal methylation level of 
APC, p16 (INK4a), and RASSF1A genes in lung cancer 
patients, and proposed using methylation biomarkers for 
early diagnosis of lung cancer [16]. Recent research using 
prospectively and pre-diagnostic peripheral collected 
blood samples, a readily accessible sample source, is 
expected to provide valuable predictive marker data [25].

In this study, we systematically analyzed the methyla-
tion data of lung cancer. By comparing the methylation 
profiles of tissue samples between lung cancer and benign 
lung disease, we identified seven unique alterations in 
methylation that could function as promising biomark-
ers for early diagnosis of lung cancer. Each marker could 
accurately distinguish lung cancers from normal con-
trol. A diagnostic model of lung cancer constructed by 
the panel of 7 DMRs achieved a sensitivity of 92.2% and 
accuracy of 93.8%. The performance of the diagnostic 
model was evaluated in a set of plasma samples and well-
discriminated results were also obtained. The abnormal 
expression of the DMRs related genes in lung cancer was 
confirmed by the TCGA gene expression data. The above 
data revealed that the 7 DMRs may play significant roles 

Table 1 Patient Demographic and Clinical Characteristics
Characteristics Patients, No. (%)

Discovery 
cohort

Valida-
tion 
cohort

Plasma 
cohort

Overall

Total, n N = 96  N = 81  N = 106  N = 283

Age-year

 Mean (SD) 54.7 (11.0) 54.2 
(9.48)

54.6 (10.1) 54.5 
(10.2)

 Median [Min, Max] 56.0 [28.0, 
81.0]

53.0 
[33.0, 
79.0]

55.0 [21.0, 
83.0]

55.0 
[21.0, 
83.0]

Gender

 Male 46 (47.9) 38 (46.9) 65 (61.3) 149 (52.7)

 Female 50 (52.1) 43 (53.1) 41 (38.7) 134 (47.3)

Smoking_history

 Never smoker 75 (78.1) 59 (72.8) 68 (64.2) 202 (71.4)

 Smoker 21 (21.9) 22 (27.2) 38 (35.8) 81 (28.6)

Family history of lung 
cancer

 No 88 (91.7) 77 (95.1) 103 (97.2) 268 (94.7)

 Yes 8 (8.3) 4 (4.9) 3 (2.8) 15 (5.3)

Histopathology

 Lung cancer 80 (83.3) 64 (79.0) 26 (24.5) 170 (60.1)

 Lung 
adenocarcinoma

78 (81.3) 63 (77.8) 23 (21.7) 164 (58.0)

 Squamous cell 
carcinoma

1 (1.0) 0 (0) 3 (2.8) 4 (1.4)

 Large cell carcinoma 1 (1.0) 1 (1.2) 0 (0) 2 (0.7)

Benign disease 16 (16.7) 17 (21.0) 30 (28.3) 63 (22.3)

 Inflammation 6 (6.3) 5 (6.2) 16 (15.1) 27 (9.5)

 Pulmonary fibrosis 3 (3.1) 5 (6.2) 5 (4.7) 13 (4.6)

 Hamartoma 0 (0) 2 (2.5) 4 (3.8) 6 (2.1)

 Pulmonary scleros-
ing pneumocytoma

1 (1.0) 1 (1.2) 4 (3.8) 6 (2.1)

 Tuberculosis 3 (3.1) 1 (1.2) 0 (0) 4 (1.4)

 Fungal infection 2 (2.1) 2 (2.5) 1 (0.9) 5 (1.8)

 Atypical adenoma-
tous hyperplasia

1 (1.0) 1 (1.2) 0 (0) 2 (0.7)

 Healthy control 0 (0) 0 (0) 50 (47.2) 50 (17.7)

Stage

 0 1 (1.3) 0 (0) 0 (0) 1 (0.6)

 I 76 (95.0) 63 (98.4) 10 (38.5) 149 (87.6)

 II 1 (1.3) 1 (1.6) 8 (30.8) 10 (5.9)

 III 2 (2.5) 0 (0) 4 (15.4) 6 (3.5)

 IV 0 (0) 0 (0) 4 (15.4) 4 (2.4)
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in development and progression of lung cancer that could 
be promising candidates for the development of diagnos-
tic biomarkers in early-stage lung cancer.

Strengths and limitations
Ideal diagnostic biomarkers are expected to be highly 
sensitive, specific to lung cancer, and non-invasively 
detectable at the early stage. We tested the seven bio-
markers in a small set of plasma samples, and it showed 
superior diagnostic performance, indicating that the 
seven DMRs could be potentially applied as biomark-
ers in clinical practices. But the sample size was limited 
in this study and next we are going to recruit more par-
ticipants to verify the generalization of the model. The 
development of lung cancer is a complex process involv-
ing multiple genetic, epigenetic, and protein expres-
sion alterations. Constructing predictive models using 

Table 2 The 7 DMRs for lung cancer diagnosis
Region Gene 

symbol
Gene name Feature 

type
chr17: 
46,655,603–46,655,750

HOXB4 Homeobox protein 
Hox-B4

shore

chr17: 
80,943,984–80,944,093

B3GNTL1 UDP-GlcNAc:betaGal 
beta-1,3-N-acetylglu-
cosaminyltransferase 
like 1

opensea

chr19: 
53,038,958–53,039,010

ZNF808 zinc finger protein 
808

shore

chr2: 
176,993,563–176,993,743

HOXD8 homeobox D8 island

chr2: 
182,322,423–182,322,574

ITGA4 integrin subunit 
alpha 4

island

chr5: 
40,681,077–40,681,250

PTGER4 prostaglandin E 
receptor 4

island

chr7: 
27,195,684–27,195,794

HOXA7 homeobox A7 island

Fig. 2 Identifying lung cancer-specific differentially methylated regions. (a-b) Heatmap of the differentially methylated sites in lung cancer and 
benign pulmonary nodule tissues in training dataset (a) and validation dataset (b), contains 6604 hypermethylated and 2703 hypomethylated regions. 
(c) The region on the genes where the hypermethylated and hypomethylated sites are located. (d) The correlation between hypermethylated and hypo-
methylated DMRs and regulatory regions in genome.
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Fig. 3 Gene expression and diagnostic performance of the 7 DMRs in TCGA. (a) The comparison of gene expression levels between lung cancer 
and normal controls based on TCGA data. (b) The representative ROC curves display the classification performance of each DMR in LUAD/LUSC vs. normal 
based on TCGA data.
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methylation biomarkers merely to assess the diagno-
sis of lung cancer may be inadequate. In the future, we 
will consider combining multi-omics such as radiomics, 
DNA fragmentation patterns, and proteomic biomark-
ers to further improve the predictive performance. Fur-
thermore, intensively investigation on the functions of 
the targeted genes is necessary to clearly elucidate the 
molecular events occurring in the lung cancer develop-
ment and progression.

Conclusion
In summary, we identified seven novel lung cancer spe-
cific methylation markers that was able to discriminate 
the lung cancer from non-lung cancer. Our study dem-
onstrates that the 7-DMR panel is of great value in the 
diagnosis of early-stage lung cancer, and thus may be 
potentially utilized as a noninvasive risk assessment tool 
for lung cancer before resection surgery.

Table 3 The 7-DMR Model Performance Metrics, Values 
presented as: Mean, (95% C.I.)
Performance 
metric

Discovery co-
hort (n = 96)

Independent 
validation co-
hort (n = 81)

Plasma cohort 
(n = 106)

AUC 0.97 (0.93-1.00) 0.96 (0.92-1.00) 0.94 (0.86-1.00)

Sensitivity 0.89 (0.82–0.95) 0.92 (0.86–0.98) 0.81 (0.73–0.88)

Specificity 0.94 (0.89–0.99) 1.00 (1.00–1.00) 0.98 (0.95-1.00)

Accuracy 0.90 (0.84–0.96) 0.94 (0.89–0.99) 0.93 (0.89–0.98)

NPV 0.63 (0.53–0.72) 0.77 (0.68–0.86) 0.94 (0.89–0.99)

PPV 0.99 (0.96-1.00) 1.00 (1.00–1.00) 0.91 (0.86–0.97)

Fig. 4 Diagnostic performance of 7-DMR model in tissues. (a-b) Confusion tables of binary results of the 7-DMR model in the training (a) and valida-
tion data sets (b). (c) The representative ROC curves of 7-DMR model in lung cancer and benign nodule tissues in both discovery and validation cohorts. 
(d-e) Unsupervised hierarchical clustering of seven methylation markers for 7-DMR model in the training (d) and validation data sets (e) for tissues. LC: 
lung cancer
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LUAD  Lung Adenocarcinoma
LUSC  Lung Squamous Cell Carcinoma
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