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Abstract 

Neoantigens generated by non-synonymous mutations of tumor genes can induce activation of neoantigen-reactive 
T (NRT) cells which have the ability to resist the growth of tumors expressing specific neoantigens. Immunotherapy 
based on NRT cells has made preeminent achievements in melanoma and other solid tumors. The process of manu-
facturing NRT cells includes identification of neoantigens, preparation of neoantigen expression vectors or peptides, 
induction and activation of NRT cells, and analysis of functions and phenotypes. Numerous improvement strategies 
have been proposed to enhance the potency of NRT cells by engineering TCR, promoting infiltration of T cells and 
overcoming immunosuppressive factors in the tumor microenvironment. In this review, we outline the improvement 
of the preparation and the function assessment of NRT cells, and discuss the current status of clinical trials related to 
NRT cell immunotherapy.
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Background
Recently, groundbreaking immunotherapies have revolu-
tionized the schemes of cancer treatment. Conventional 
immunotherapies include immune checkpoint inhibitors 
(ICIs), adoptive cell therapy (ACT) and cancer vaccines, 

all of which improve the capability of immune system of 
recognizing and attacking cancer cells [1, 2]. However, 
due to the heterogeneity of tumors, Immunotherapy tar-
geting single antigen may also result in the generation of 
target-irrelevant tumor cell clones and tumor immune 
escape, which has been reviewed in reference [3]. There-
fore, it is urgent to develop multi-targeted immuno-
therapy. The term “neoantigen” means a new epitope 
of autoantigens generated by somatic non-synonymous 
mutations [4]. And cancer neoantigens will be generated 
by this kind of DNA mutations accumulated in tumor 
cells [5]. These antigens have tumor specificity and are 
absolutely absent in normal cells; they also possess the 
ability to stimulate autoimmune response and are not 
subject to central immune tolerance [6]. Targeting mul-
tiple neoantigens can be a significant measure to deal 
with the challenge of tumor immune escape. Since adop-
tive therapy with tumor infiltrating lymphocytes (TILs) 
emerged in the 1980s, neoantigens have been found as 
the major targets of TILs to exert specific antitumor 
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function. Researches showed that these neoantigens can 
induce neoantigen-specific T cells, also called “neoanti-
gen-reactive T cells” or “NRT” cells. Researches on NRT-
based immunotherapies, including neoantigen vaccine 
and NRT cell adoptive therapy, have made remarkable 
achievements in melanoma and other solid tumors [7, 
8]. The common point of these therapies is to recognize 
and kill neoplastic cells with autologous or heterolo-
gous NRT cells. However, Zhuting Hu et  al. noted that 
neoantigen vaccine cannot induce adaptive immunity if 
not combined with appropriate adjuvants in the review 
of [6]. Even after activation, this vaccine still upregu-
lates the immunosuppressive signaling of cancer, leading 
to the formation of suppressive tumor microenviron-
ment (TME) [9]. What is more, weak immune induc-
tion is the most obvious defect of neoantigen vaccine in 
the treatment of advanced solid tumors. By contrast, a 
recent review has revealed that NRT cells can directly 
infiltrate into tumors after cultivation, and overcome 
the inhibition from TME by genetic modification of sig-
nal molecules [10]. For these reasons, developing NRT 
cell adoptive therapy can be a more effective method in 
treating solid tumors. This review focuses on the devel-
opment history, preparation process, and preclinical as 
well as clinical researches of NRT cell therapy. It also 
explores the methods to enhance the anti-tumor effect 
of NRT cells.

Development history of NRT cell therapy
In the 1980s, De Plaen E. et al. first explored a neoantigen 
deriving from a single nucleotide variant which could be 
recognized by cytolytic T cells [11]. Subsequently, numer-
ous cancer-related mutations that can be recognized by 
T cells were identified, including tumor associated anti-
gens (TAAs), tumor specific antigens (TSAs), and cancer 
or testis antigens [12–16]. Among them, TSAs, especially 
neoantigens, are considered as the optimal tumor tar-
gets because they are never expressed in normal tis-
sues and have a low probability of inducing tolerance. In 
a recent review, this group of antigens were divided into 
three types: Guarding neoantigens can induce antitumor 
immune response independently; restrained neoantigens 
have immune checkpoint-dependent immunogenicity; 
ignored neoantigens lack spontaneous immunogenicity 
[17]. The majority of neoantigens belong to the “ignored 
neoantigen” type, regarded as “the reserve of neoantigens”, 
which can be prepared as vaccine to induce autologous 
NRT cells [17]. In 2004, Rosenberg and his colleagues 
completed the first case of adoptive cell therapy, which 
showed that the tumor in metastatic lesions of patients 
with malignant melanoma regressed completely after 
adoptive transfer of TILs [18]. In another study, they 
also demonstrated that this therapy with two identified 

neoantigens can promote tumor infiltration of NRT cells 
and prolong their persistence [19]. The emergence of the 
next-generation sequencing technology has brought a 
new dawn for screening tumor neoantigens. This tech-
nique, combined with major histocompatibility complex 
(MHC) binding prediction approach based on silico algo-
rithms, facilitates the selection of optimal missense genes 
and has become the mainstream method in neoantigen-
identification [20, 21]. Patrick A. Ott et al. observed that 
neoantigen vaccine, another neoantigen-based immuno-
therapy, induces significant anti-tumor immune response 
in melanoma patients [22]. This therapy provides another 
reasonable, safe and durable anti-tumor method in a more 
individualized mode, but it has failed to achieve clinical 
benefits in a wider spectrum of cancer patients, which is 
addressed in the review of [23]. However, the combined 
treatment of neoantigen vaccines and immune checkpoint 
inhibitors at least partly provides a reference scheme for 
enhancing the clinical response of NRT cell treatment 
[24]. Currently, The focus of NRT cell therapy has shifted 
from melanoma to other solid tumors [25–29]. However, 
the efficacy of this therapy in solid tumors is limited, 
which is related to tumor immune escape, immune cell 
exhaustion or dysfunction, and immunosuppressive state 
of the tumor microenvironment (TME). Current NRT 
therapy mainly stems from improvement on TILs adop-
tive therapy. Neoantigen vaccines, adoptive transfer of 
NRT cells, TCR-engineered T cells and chimeric recep-
tor T cell therapy have gradually emerged in clinical indi-
vidualized antitumor treatment. Encouraging results from 
clinical studies highlight the importance of NRT cells in 
antitumor immunity. However, because few researches 
have studied adopting NRT cell therapy, very limited 
information of how to increase the efficacy of NRT cells 
adoptive therapy can be obtained from completed clinical 
trials hitherto. More endeavors are therefore needed to 
dissect the relationship between tumor immunity, neoan-
tigens, and immune cells.

Introduction of neoantigen detecting platforms
Unlike overexpressed or abnormally expressed tumor-
associated antigens, neoantigens are absent in the normal 
human genome [30]. The high-throughput sequencing 
technology and algorithmic prediction platforms ren-
der neoantigen identification more rapid and accurate 
(Fig.  1B, C) [31]. As for high-throughput sequencing, 
whole exome sequencing (WES) becomes the keystone of 
neoantigen identification [32]. Besides, mass spectrom-
etry technology provides a large number of peptide data 
for training of MHC prediction platforms [33] (Fig. 1B). 
As for algorithmic prediction platforms, machine learn-
ing and artificial intelligence platforms (Fig. 2A) help to 
precisely predict potential MHC binding epitopes and 
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MHC-peptide binding affinity based on sequencing out-
comes. Some common prediction software, algorithms, 
and databases are listed in Table  1. Mutation screening 
is the first step in neoantigen identification. Mutation 
calling tools include Burrows-Wheeler Alignment tool 
(BWA), ANNOVAR, MuTect, SomaticSniper, VarScan, 
and FusionCatcher [34–38]. Differences between mutant 
sequence and wild sequences can be identified using the 
differential agretopic index (DAI) [39]. It is necessary 
to predict MHC binding ligands and binding affinity to 
determine whether mutations can form neoantigens. 
Published software represented by NetMHCpan, MHC-
flurry, HLAthena, MHCnuggets and ProGeo-Neo shows 
favorable outcomes in neoantigen prediction [40–44]. 
Immune Epitope Database (IEDB) is a primary epitope 
database and nealy all the prediction tools use the data 
from it [45]. The company of this database recently devel-
oped TCRMatch, which can identify T cell epitopes with 
unknown specificity based on optimized T cell epitope 
data of IEDB [46]. However, the data of IEDB are mostly 
from virus resources, which lead to the deviation of 

cancer neoantigen prediction. Novel database-Tumor 
Neoantigen Selection Alliance (TESLA)-based on tumor 
sequencing data will improve the precision of tumor neo-
antigen prediction [47]. The platforms widely applied in 
predicting MHC ligands are trained on neoepitope pre-
diction with the data from literature or online databases. 
Each platform has the limitations of prediction objects 
and methods, while collaboration of multiple platforms 
will improve the specificity and accuracy. It is reasonable 
to prospect that these techniques will help to solve the 
difficulty in choosing the optimal neoantigen to activate 
antitumor NRT cells, which may be conducive to the effi-
cacy improvement of immunotherapy.

Process of NRT cell induction
The major purpose of predicting neoantigens precisely 
is to induce the immune response of NRT cells, which 
is the critical element for antitumor immunotherapy. To 
induce NRT cells, the wide accepted protocols mainly 
include: specimen acquisition and isolation (Fig.  1A), 
identification of non-synonymous mutation through 

Fig. 1 Process of NRT cell manufacturing and adoptive therapy. NRT cells are manufactured via the following steps: A acquisition and cultivation 
of tumor specimens and peripheral blood mononuclear cells; B mutation identification with WES/WGS/RNA sequencing (seq), potential antigen 
detection with mass spectrometry; C neoantigen prediction; D design and synthesis of neoantigen-encoding mRNA in tandem minigene 
configuration or neoantigen peptides; E pulsing DCs directly with peptides, or transfection of neoantigen-encoding mRNA into DCs by 
electroporation, followed by the co-incubation of neoantigen-loaded DCs and PBMC-derived T cells, F flow cytometry-based neoantigen-specific T 
cell sorting; G rapid expansion protocol (REP) of NRT cells, H reinfusion of NRT cells into patients or mouse model
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WES/WGS/RNA sequencing (seq), and detection of 
potential antigens with mass spectrometry (Fig. 1B), neo-
antigen prediction utilizing bioinformation technology 

(Fig.  1C), design and synthesis of neoantigen-encoding 
mRNA in tandem minigene configuration or neoantigen 
peptides (Fig.  1D), pulsing DCs directly with peptides, 

Table 1 Common platforms and algorithms for neoantigen prediction

Tools Name Function Tool type Ref

Burrows-Wheeler Alignment tool (BWA) Alignment tool for mutation identification software [34]

ANNOVAR Mutation identification and functional annotation software [35]

MuTect,SomaticSniper Mutation calling and screening software [36, 37]

VarScan Mutations and copy number alterations calling software [38]

FusionCatcher Fusion gene mutation identification software http:// code. google. 
com/p/ fusio ncatc 
her/

NetMHCpan/NetMHCpanII, MHCflurry MHC-I/II binding affinity prediction software [41, 48–50]

MixMHCpred score, HLAthena MHC-I binding ligands prediction algorithm [42, 51]

MHCnuggets MHC-I or MHC-II binding ligands prediction software [43]

ProGeo-Neo Mutation calling, MHC-I and MHC-II binding affinity and binding 
ligands prediction

software [44]

Differential agretopic index(DAI) Difference identification between mutant and wild sequences algorithm [39]

NetCTLpan T cell epitope and MHC-I binding ligands prediction software [52]

TCRMatch T cell epitope prediction software [46]

PyClone Clonal population prediction algorithm [53]

MuPeXI Neoantigen Immunogenicity identification software [54]

Immune Epitope Database (IEDB) Epitope data database [45]

Tumor Neoantigen Selection Alliance(TESLA) Epitope and sequencing data database [47]

Fig. 2 Feasible improvement for the manufacture of NRT cells. A Optimize neoantigen predicting platforms to promote the efficiency and accuracy 
of prediction. B Micro-electroporation (a), microinjection (b) and nano-delivery c can be applied to elevate transfection efficiency. Artificial APCs 
can be used to increase the efficiency of antigen presentation. C Promote NRT cell expansion in rapid expanding protocol (REP) through adding 
cytokines (IL-2, IL-7 and IL-15) (a) or anti-4-1BB antibody (b), using feeder cells (Bcl-xL, K562) (c), inhibiting AICD signaling cascade (d), or adopting 
the culture method of “young” T cells (e) or organoids (f ). D Screen NRT cells with surface or genetic markers via single-cell transcriptome and TCR 
sequencing

http://code.google.com/p/fusioncatcher/
http://code.google.com/p/fusioncatcher/
http://code.google.com/p/fusioncatcher/
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or transfection of neoantigen-encoding mRNA into 
DCs by electroporation, followed by the co-incubation 
of neoantigen-loaded DCs and PBMC-derived T cells 
(Fig. 1E), NRT cell functional assay and sorting through 
flow cytometry (Fig. 1F), rapid expansion protocol (REP) 
of NRT cells (Fig. 1G) before reinfusion into patients or 
mouse model (Fig.  1H) [55, 56]. Then, efficacy assess-
ments of NRT cell adoptive therapy will be performed. In 
this part, we will introduce the improvement strategies of 
NRT cell induction specifically.

Ameliorated technologies, such as microinjection, 
micro-electroporation and nano-delivery, should be 
taken into account to elevate transfection efficiency 
(Fig.  2B a, b, c) [57, 58]. Because of the limited capac-
ity of antigen presentation and long duration of the 
induction process when using autologous DCs, modi-
fied strategies of allogeneic APCs have been put for-
ward (Fig.  2B d). Synthetic APCs, including magnetic 
and polymer compound beads covered with anti-CD3/
CD28 antibody and HLA-Ig, also can be used to activate 
NRT cells [59, 60]. Nanoparticle-based artificial antigen 
presenting cell can mimic DCs to effectively prime and 
expand T cells. The following are some ways whereby 
this APC can be engineered: adding co-receptors, syn-
thesizing nanoparticles coated with molecule-labeled 
DC membrane and T cell targeted antigens, modifying 
the shape of nanoparticles and endowing anti-phago-
cytosis ability [61–64]. Introduction of IL-2, and low-
level IL-7 and IL-15 can be a time-saving method for 
NRT cell priming in expanding process, and these two 
cytokines promote the formation of the effector phe-
notype and the central memory phenotype while IL-15 
additionally induces the stem cell memory phenotype of 
T cells (Fig.  2C a) [65, 66]. Cultivating TILs with ago-
nistic CD137 (4-1BB) monoclonal antibodies increases 
frequency of CD8 + TILs, as well as amplification rate 
and quantity of T cell subclone types (Fig.  2C b) [67]. 
The “feeder cell”, including immortalized B cells and 
K562 cells, can be modified to express signals for T cell 
proliferation, which wins the favor of researchers in the 
REP process(Fig.  2C c) [68, 69]. In addition, inhibiting 
AICD signaling cascade and preventing the aging of 
T cells (“young” T cultivation method) in the process 
of REP will enhance the activity and prolong the per-
sistence of adoptively transferred T cells (Fig.  2C d, e) 
[70, 71]. Another strategy is to cultivate NRT cells with 
tumor organoids in a personalized manner (Fig.  2C f ) 
[72]. This patient-specific cell culture method develops 
a platform for better exploring the interaction between 
T cells, tumor cells and other immune cells from native 
environment. The study of NRT cells based on multi-
omics analysis has confirmed its feasibility [73]. Gener-
ally, a more efficient inducing process of NRT cells has 

important implications for NRT cell therapy. The above-
mentioned strategies seek to improve the efficiency of 
vector transduction, and promote the amplification and 
activation of T cells.

Detection of neoantigen‑reactive T cell populations
Florian Kast et  al. reviewed that using pMHC tetramer 
and dextramer binding assay based on flow cytometry 
can strengthen the binding forces between single pMHC 
and TCR, and elevate the efficiency of NRT cells screen-
ing (Fig. 1F) [4]. However, due to its low sensitivity, this 
technique cannot detect rare T cell clones containing 
NRT cells. Single-cell transcriptome and TCR sequenc-
ing play essential roles in the discovery of novel tumor-
reactive T cell subclones, and further aid in the analysis 
and filteration of potential NRT cells within these sub-
clones (Fig. 2E). Currently, the most common single-cell 
sequencing method of T cells mainly adopts microwell or 
microfluidic technology [74, 75]. Then, reverse transcrip-
tion and PCR amplification are performed before tran-
scriptomic and TCR sequencing. The sequencing data 
can be integrated and analyzed to identify T cell sub-
clones and reconstruct TCR chains for pairing TCR with 
specific T cell clones [75, 76]. With the support of bioin-
formatic analysis, it is more convenient to find potential 
therapeutic targets and novel biomarkers with prognostic 
value, which facilitates efficacy evaluation of immuno-
therapies tailored to individuals. The feasibility of this 
novel detecting method has been demonstrated in several 
studies, and NRT cell populations have been successfully 
identified and isolated [77, 78]. The latest research also 
revealed that NeoTCR signatures can be used to identify 
specific antitumor NRT cells via single-cell transcriptome 
and single-cell TCR sequencing [79].

The value of screening signatures in NRT cell identification
Currently accepted surface markers of NRT cell include 
CTLA-4, PD-1, LAG-3, TIM-3 and TIGIT. 4-1BB/
CD137 is transiently expressed on T cells, which is 
regarded as specific activating signature of NRT cells and 
extensively used in NRT cell population screening [80, 
81]. High frequency of CD39 + tumor reactive T cells is 
relevant to better prognosis in cancer patients [82]. NRT 
cells of stem-like double negative (CD39- CD69-) phe-
notype show stronger antitumor activity and longer per-
sistence despite the rarity of these cells [83]. In addition, 
other novel NRT cell surface markers have been identi-
fied, including CXCL13 and CD200 [84–86]. Particu-
larly, the expression of CXCL13 is significantly different 
between NRT cells and bystander T cells. Common gene 
signatures include PDCD1, ENTPD1, LAG3, TIGHT, 
TNFRSF9, HAVCR2, BATF, GZMA/B/K, IFNA/B/G 
and CXCL13 gene [79, 84]. In order to elevate sensitivity 
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and specificity of NRT cell screening, a combination of 
surface markers and transcriptome markers is recom-
mended for identifying NRT cells. This approach not 
only facilitates the cell screening process, but also cir-
cumvents the influence of functional assays on the via-
bility of the cells.

Feasible engineering strategies for NRT cells
The process of TCR recognizing and binding to MHC 
molecules is of great importance for T cells to perform 
antitumor function. The challenges are how to make 
T cells recognize tumor cells more effectively, how to 
enhance TCR function without increasing toxicity, and 
how to counteract the problems of T cell exhaustion 
as well as dysfunction. Therefore, we summarize some 
feasible engineering strategies for NRT cells to address 
these issues (Fig.  3A). Currently, the three most com-
mon engineering objects are TCR signals, co-stimulated 
signals and cytokines of T cells. Using transgenic TCR, 
co-expressing CD8 αβ with TCR and upregulating adhe-
sion molecules can enhance MHC-TCR binding avid-
ity and elevate signal-transducing efficiency [87–89]. 
Besides, engineering co-stimulatory signals is proposed 
to prolong T cell persistence and enhance anti-tumor 

activity, which can be achieved by coupling T cell acti-
vating signals (CD3ζ) with co-stimulating signals (CD28, 
OX40, 4-1BB), or using chimeric switch receptors which 
link exodomain of CTLA-4, PD-1 or TIGHT to intrado-
main of CD28 [90–95]. In addition, engineering cytokine 
receptors represented by orthogonal IL-2 has been 
found to enhance T cell antitumor function while atten-
uating the side effects caused by cytokine pleiotropy 
[96–98]. And T cells engineered to secrete additional 
cytokines (IL-7/12/15/18/23 and Flt3L) or chemokines 
(CXCL9/10/11 and CCL19/21) also show enhance-
ment of activity and function [99–109]. These strategies 
improve the function of autologous tumor-reactive T 
cells, promote their phenotype switching, and, mean-
while, recruit other immune cells (such as NK cells and 
DCs) to exert antitumor effects. The abovementioned 
engineering strategies are used in CAR-T cells. CAR-T 
cells can also be designed to release enzymes, express 
multiple immunomodulators, deliver endogenous RNA, 
maximize the diversity of functions and minimize “off-
target” toxicity, which are summarized as comprehensive 
strategies of armored CAR-T (Fig. 3B). These strategies 
have been reviewed in [110–113]. Engineering strate-
gies of TCR T cells can also draw on this idea to extend 

Fig. 3 Feasible strategies for the improvement of T cell antitumor function. A Engineer T cell signals. Signal 1: edit TCR genes or make TCR and CD8 
αβ co-expression. Signal 2: join CD28 to CD3ζ combined with 4-1BB or OX40 to enhance activation signals, construct the chimeric switch receptor 
(e. g., CD28 linked to PD-1,CTLA-4 and TIGHT) to reverse inhibitory signals. Signal 3: modify cytokine receptors (e. g., IL-2 orthogonal receptor) 
and increase the expression of autologous or heterologous cytokines or chemokines. B Produce multiple-function T cells: optimize CARs, secrete 
cytokines and enzymes, release extracellular vesicles containing RNAs, express multiple chemokine receptors, and modify immunosuppressive 
signal receptors. C Universal strategies to restore and increase the expression of MHC (inducing IFNγ production, using epigenetic silence or 
autophagy inhibitors (a)) and MICA/B (anti-MICA/B antibody (b))
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persistence, promote homing and penetration into 
tumors, and enable T cells to target tumor cells and acti-
vate multiple immune cells simultaneously. Overall, the 
above researches highlight the necessity of T cell signal-
ing in priming, proliferation and exerting function. Engi-
neering strategies for receptors and cytokines expressed 
by T cells help to improve the persistence and antitumor 
function of T cells. We propose that these T cell modi-
fication methodologies can be also used to improve the 
antitumor activity as well as persistence of NRT cells, 
and promote infiltration of immune cells into solid 
tumors to limit their growth more effectively.

Universal strategies for NRT cell therapeutic enhancement
MHC-TCR recognition pattern is the primary mecha-
nism of NRT cell therapy. Under certain circumstances, 
however, tumor escape will occur when classical 
MHC molecules are downregulated or lose expres-
sion, which may be caused by gene reconstruction or 
mutation and deletion of functional components, loss 
of transcription factor, epigenetic silence, and pre-or 
post-transcriptional inhibitory regulation [114, 115]. 
Deficient expression of MHC also leads to dysfunc-
tion in the neoantigen presentation process [116]. This 
phenomenon will eventually affect the ability of T cells 
to recognize tumor cells. Since traditional TCR engi-
neered T cells have MHC -restriction, modification of 
autologous T cells can be cumbersome and expensive. 
It is a tendency to use universal methods to enhance 
the antitumor function of T cells (Fig.  3C). These 
strategies can be used as auxiliary means to improve 
the efficacy of NRT cell therapy. The first strategy is 
to restore and increase expression of MHC molecules 
(Fig. 3C a). Previous researches have shown that IFN-γ 
can increase MHC expression [117]. Adopting epi-
genetic silence inhibitors, such as DNA methyltrans-
ferase inhibitors and histone deacetylase inhibitors, 
also has a pronounced effect on restoring or increasing 
MHC molecular expression [118–121]. Besides, reduc-
tion of MHC expression caused by autophagy can be 
another common tumor escape mechanism in a solid 
tumor. Autophagy inhibition recovers the MHC level 
of the tumor cell surface and promotes T cell activa-
tion [122]. NK cells acquire disinhibition when tumor 
cells decrease MHC molecular expression, and become 
activated when detecting ligands of activating recep-
tors. Thus, exploiting the NK-involved antitumor 
mechanism can be a feasible and reasonable strategy 
to counteract tumor escape. A vaccine designed to 
induce antibodies that anchor MICA/B has been dem-
onstrated to prevent tumor escape and enhance the 
function of tumor-reactive T cells and APCs (Fig. 3C b) 

[123]. Notably, this vaccine targeting MHC-I expressing 
tumors can be applied in clinical ACT as an inexpen-
sive and effective “off-the-shelf ” drug.

Influence of T cell infiltration and tumor microenvironment 
on the efficacy of immunotherapy
Although adoptive therapy of engineered T cells shows 
remarkable efficacy in clinical therapy, the interaction 
among malignant cells, immune cells, and other stromal 
components also requires deep exploration, which will 
offer feasible approaches to improving the infiltration 
and potency of T cells, preferably NRT. In some recent 
reviews, turning “cold tumors (immune-excluded and 
deserted tumors)” into “hot tumors (immune-inflamed 
tumors)” has become a research hot spot to strengthen 
immunotherapy efficacy [124, 125]. Compelling evi-
dence proves that infiltration of antigen-specific T cells 
within tumors promotes favorable clinical outcomes. 
However, tumor-infiltrating T lymphocytes express-
ing high-level inhibitory receptors trigger downregu-
lation of antitumor response, and low-level expression 
of chemokine receptors leads to poor T cell infiltration 
[126]. Strategies to improve T cell infiltration have been 
proposed to overcome these challenges (Fig. 4A). With 
radiotherapy and chemotherapy, tumor cells undergo 
immunogenic cell death (ICD), and release multiple 
cytokines and chemokines [127, 128]. Radiotherapy 
and thermal ablation can directly kill tumor cells or 
induce their apoptosis, as well as increase expression 
of MHC on the surface of the antigen presenting cells. 
[129, 130]. Compared with monotherapy, combination 
of NRT cell adoptive therapy or neoantigen vaccine 
with ICIs (Fig. 5) has been proven to achieve impressive 
outcomes [22, 24, 26]. Suppressive tumor microenvi-
ronment (TME) is composed of fibroblasts, immuno-
suppressive cells, abnormal proliferating vasculature 
and extracellular matrix, which may negatively impact 
host immune cell infiltration. Eliminating the physical 
barrier effect of extracellular matrix (ECM) by using 
ECM targeting agents can promote T cell infiltration 
into tumors (Fig. 4B), which has been addressed in the 
reviews of [131, 132]. The most common strategy for 
depleting the stroma is to use albumin-bound pacli-
taxel to facilitate T cell infiltration [133, 134]. Research 
showed that combinational therapy with nab-paclitaxel 
and gemcitabine or nab-paclitaxel and atezolizumab 
significantly improves tumor control and patient sur-
vival [135]. Aberrant growth of tumor vasculature will 
result in the formation of hypoxia and immunosup-
pressive TME [136]. Thus, normalizing the originally 
abnormal tumor vasculature via antiangiogenic agents 
(such as VEGFR inhibitor) and ICIs treatment will 
reduce hypoxia and remodel TME for a more favorable 
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Fig. 4 Strategies for promoting NRT cell tumor infiltration and modifying suppressive TME. A Improve tumor reactive T cell infiltration through 
inhibiting immunosuppressive signals, and promoting the expression of chemokines and the release of tumor specific antigens. B Eliminate the 
physical barrier effect of extracellular matrix(ECM) using drugs such as nab-paclitaxel. C Normalize abnormal vasculature by using VEGFR inhibitor. D 
Deplete immunosuppressive cells(Treg and MDSCs) and inhibit their activation signals. E Repolarize tumor-associated macrophages(TAM) from M2 
towards M1. F Induce the formation of tertiary lymphoid structures(TLSs)(chemotherapy, ICIs, vaccine and stromal cell)

Fig. 5 Feasible combinational therapy strategies of adoptive NRT cell therapy. Feasible combinational therapy strategies are shown in this 
figure. Adoptive NRT cell therapy can be combined with such strategies: immune therapy (immune check point inhibitors (ICIs), mRNA/peptide 
neoantigen vaccine, DC neoantigen vaccine), targeted drugs (e.g., antiangiogenic agents) and traditional therapy (surgery, radiotherapy and 
chemotherapy)
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treating condition and potentiate antitumor immune 
cell activation (Fig. 4C) [136, 137]. Immune suppressive 
cells, such as Tregs, myeloid-derived suppressor cells 
(MDSCs) and tumor-associated macrophages (TAMs), 
are important study subjects in researches on overcom-
ing resistance from TME. Depletion is the most com-
mon strategy for decreasing the quantity of both Tregs 
and MDSCs (Fig.  4D). Using anti-CCR4-antibody can 
deplete suppressive Treg cells in TILs and enhance anti-
tumor-specific function of T cells [138]. For MDSCs, 
gemtuzumab can deplete intratumoral MDSCs, and the 
CXCR2 antagonist can block migration of MDSCs into 
tumors [139, 140]. Besides, targeting signaling pathway 
can also inhibit the proliferation and function of Tregs 
or MDSCs. Tregs can be inhibited by deleting transcrip-
tion factor Blimp1 [141], while MDSCs can be inhibited 
by upregulating LXR expression [142], downregulat-
ing PEKR expression [143] or blocking CaMKK2 signal 
pathway [144]. In addition, another research hot spot 
is re-polarization of tumor-associated macrophages 
(TAM) from an anti-inflammatory (M2) phenotype to a 
pro-inflammatory (M1) one (Fig. 4E). This can be real-
ized by using CpG-ODN [145] or non-coding RNAs as 
the immune regulator [146], or inhibiting the metabo-
lism of lipid [147]. Tertiary lymphoid structures (TLSs) 
have a significant association with immune cell infiltra-
tion and cancer prognosis (Fig. 4F). In the two reviews 
of TLSs, the authors believed that solid tumors with 
more TLSs present a large quantity of effector mem-
ory T cells and cytotoxic T cells [148, 149]. Activated 
B cells in TLSs, except Bregs, can present antigens, 
stimulate activating signals, and secret cytokines to 
activate T cells and augment their antitumor function. 
Researches have demonstrated that the synergy work 
of B cells and T cells, together with the cooperation of 
humoral and cellular immunity, impacts the immune 
response and survival of patients [150, 151]. The num-
ber of TLSs is positively related to the efficacy of immu-
notherapy. And the induction of TLSs formation can 
be realized by applying ICIs [149, 152], vaccines [9], 
lymphoid chemokines or stromal cells [153, 154]. The 
abovementioned strategies strive to facilitate T cell 
infiltration, reinvigorate and augment the function of 
effector T cells, induce memory T cell generation, and 
eventually remodel adverse TME. These strategies can 
be performed by inhibiting immunosuppressive signals, 
increasing chemokine expression, removing barriers 
from TME, depleting or remodeling immunosuppres-
sive cells, re-directing TAMs toward antitumor pheno-
type, and inducing formation of TLSs within the tumor. 
These measures dedicated to overcoming extracellular 
resistance can also improve the efficacy of adoptive 
NRT cell therapy in solid tumor treatment.

Clinical Trials for NRT cell therapy
We have summarized the clinical trials of NRT cell adop-
tive therapy and other NRT cell-related immunotherapies. 
Twenty-six eligible researches are incorporated, among 
which six are on NRT cell  adoptive therapy, one on NRT 
cell  adoptive  therapy plus neoantigen vaccine (Neovax), 
one on neoantigen dendritic cell vaccine (Neo-DCVac) 
plus NRT cell adoptive  therapy,  seven on NeoVax, two on 
Neovax plus ICIs, three on tumor infiltrating lymphocytes 
(TILs), one on TIL plus ICIs, two on Neo-DCVac, one 
on Neo-DCVac plus ICIs and two on ICIs monotherapy. 
Almost all these researches are in phase I or II, and the 
majority are applied in melanoma due to its high mutant 
frequency. We have found that patients receiving NRT cell 
adoptive therapy or neoantigen vaccine therapy combined 
with ICIs outperform those who only receive monotherapy. 
In the following paragraphs we will mainly introduce clini-
cal trials of NRT cell therapy. Other researches of NRT cell-
related immunotherapy will be listed in Table 2. Schemes of 
feasible NRT cell combinational therapy are shown in Fig. 5.

The majority of traditional engineered TCR T cells 
are designed to target tumor-associated antigens 
(TAAs) while relatively few teams have conducted 
researches on neoantigens [89, 176]. It is difficult for 
these T cells to eliminate tumor cells thoroughly due 
to their heterogeneity, and patients also show lim-
ited clinical responses or even suffer autoimmune 
diseases caused by the “off-target” effect [177–180]. 
Rosenberg’s team is devoted to exploring NRT cell 
populations targeting shared antigens and develop-
ing engineered neoantigen-targeted TCR T cells as 
“off-the-shelf ” products. Their first NRT cell therapy 
case was a metastatic cholangiocarcinoma patient 
who received ERBB2IP-targeted CD4 + T cell therapy 
and achieved disease stability for more than one year 
after twice reinfusions [155]. KRAS-G12D-targeted 
NRT cells in gastrointestinal cancers have also been 
screened [181, 182]. Recently, a case report showed 
that a pancreatic cancer patient who received KRAS-
G12D NRT cell therapy obtained a 6-month partial 
objective response accompanied by long-term exist-
ence of effector T cells [156]. Besides, twelve patients 
in two clinical trials who harbored TP53 mutation 
received NRT cell therapy. Among them, two patients 
exhibited a partial response, and another patient with 
chemo-refractory breast cancer realized tumor regres-
sion that lasted for at least six months [157]. Another 
research team conducted two pioneering clinical trials, 
showing the value of transferring NRT cells in treat-
ing advanced and refractory solid tumors. In the first 
study, researchers compared the therapeutic effects of 
two sources of neoantigens-de novo and shared library. 
In three patients treated with NRT cells manufactured 
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by the de novo pattern, the overall response rate of 
T cells to neoantigens was lower than 34%. However, 
using a shared neoantigen library could significantly 
increase the efficiency and accuracy of hot spot muta-
tion identification. Six patients using NRT cells made 
by this pattern achieved one CR, one PR, and four 
SD [27]. In the second study, a patient with advanced 
hepatocellular carcinoma (HCC) received NRT cell 
therapy combined with radiotherapy and ICI therapy, 
and realized partial response and complete regression 
in the new lesion [25]. This study completed the first 
comprehensive NRT cell therapy in an advanced HCC 
patient who benefited from prolonged survival without 
severe side effects. In addition, other studies have also 
shown favorable clinical results of NRT cell therapy. 
Nikolaos Zacharakis et al. presented a case of a breast 
cancer patient with complete regression after rein-
fusion of NRT cells targeting four individual somatic 
mutations combined with ICIs [26]. Our team also 
reported a case of a collecting duct carcinoma (CDC) 
patient who obtained SD with decreased tumor loads 
and regression of metastatic lesions after administra-
tion of NRT immunotherapy [28]. More than 92% of 
the neoantigens in this research could fully stimulate 
reactive T cells in PBMC. The activation proportion 
of NRT elevated from 1.92% to 7.92%. The latest phase 
II clinical trial used NRT cell therapy combined with 
DC neoantigen vaccine, chemotherapy, radiofrequency 
ablation, and ICIs to treat hepatocellular carcinoma 

[158]. Fifty percent of the patients obtained disease 
stability without relapse for two years. Other patients 
failed to respond due to depletion of tumor neoanti-
gen and generation of new neoantigen epitope. The 
overall safety of adoptive NRT cell therapy is good 
and no prominently serious adverse events have been 
observed. Only two among the seven studies of NRT 
cell therapy reported minor adverse reactions of grade 
1–2 [27, 157]. These results demonstrate that this 
therapy is feasible and safe for the activation of autolo-
gous NRT cells to eliminate tumor cells.

Furthermore, some recruiting studies on NRT cell ther-
apy and engineering TCR neoantigen T cells are listed in 
Table 3. All these researches aim at solid tumors, includ-
ing three in phase I, six in phase I/II, and two in phase 
II clinical trials. Four studies use shared NRT cells, while 
two use de novo NRT cells. Six studies apply NRT cells 
combined with ICIs, one of which also adds CDX-1140, a 
monoclonal antibody targeting CD40. The feasibility and 
safety of these researches need to be confirmed by the 
publication of the latest results.

The studies above show that NRT cell therapy realizes 
favorable tumor regression and long-term antitumor 
effect, especially for patients of end-stage melanoma or 
refractory solid tumors, in a more individualized or “off-
the-shelf ” way. However, due to the inaccuracy of pre-
diction algorithms or suppression of TME, the overall 
response to NRT cell therapy is limited. In some cases, 
shared antigens are not included in the top alternative 

Table 3 Recruiting researches of NRT cell and engineering TCR T cell therapy

Identifier Posted Year Cancer Intervention Target Phase Combination Country Status

NCT03190941 2017 gastrointestinal 
and pancreatic 
cancer

engineering 
TCR-T cell

HLA-A*11:01, KRAS G12V I/II none United States recruiting

NCT03745326 2018 gastrointestinal 
and pancreatic 
cancer

engineering 
TCR-T cell

HLA-A*02:01,KRAS-G12D I/II none United States recruiting

NCT03412877 2018 solid tumor engineering 
TCR-T cell

unknown II Pembrolizumab United States recruiting

NCT04102436 2019 solid tumor engineering 
TCR-T cell

unknown II none recruiting

NCT03970382 2019 solid tumor engineering 
TCR-T cell

unknown I Nivolumab United States Suspended

NCT04032847 2019 NSCLC NRT 
cells(ATL001)

mutiple neoantigens I/II Pembrolizumab United Kingdom recruiting

NCT03997474 2019 melanoma NRT 
cells(ATL001)

mutiple neoantigens I/II Nivolumab United Kingdom recruiting

NCT04146298 2019 pancreatic cancer NRT cells HLA-A*11:01,KRAS G12V I/II Anti-PD-1 mono-
clonal antibody

China recruiting

NCT04520711 2020 malignant epithe-
lial cancer

engineering 
TCR-T cell

unknown I CDX-1140 + Pem-
brolizumab

United States recruiting

NCT05194735 2022 solid tumor engineering 
TCR-T cell

unknown I/II none United States recruiting

NCT05478837 2022 diffuse midline 
glioma

engineering 
TCR-T cell

HLA-A*0201, H3.3K27M I none United States not yet recruiting
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neoantigens, which means driver gene peptides are not 
the optimal targets in some cancer patients. The efficacy 
of adoptive NRT cell therapy will be improved by both 
traditional therapy and other immunotherapies, which 
can broaden the repertoire and augment the function of 
autologous NRT cells.

Limitations of NRT cell therapy
Although adoptive NRT cell therapy has superiority 
in effectiveness and safety in advanced tumor treat-
ment, it still has some limitations. Under the pressure 
of immune editing, the consequence of the tumor cell 
evolution is that the quantity of cancer neoantigens 
originating from driver mutation will decrease while 
the number of those deriving from passenger muta-
tion will increase. Thus, NRT cells designed to target 
single driver gene mutations (e.g., KRAS, TP53) fail to 
achieve complete regression of primary tumors. More-
over, unlike driver mutation-derived neoantigens, pas-
senger mutation-derived neoantigens are different in 
each patient, suggesting that the cell products for each 
patient need to be tailored. Besides, the deficiency of 
predicting platforms leads to the deviation of neoan-
tigen prediction and dissatisfactory treatment efficacy. 
Compared with the neoantigen vaccine, adoptive NRT 
cell therapy targets fewer neoantigens and induces 
a narrower breadth of the immune response [5, 183], 
and the process of NRT cell manufacturing is compli-
cated, time-consuming and costly. Existent evidence 
has shown that ex  vivo cultivation will increase the 
proportion of the terminal differential phenotype of T 
cells and reduce activity and proliferation of NRT cells 
[184–186], whereas neoantigen vaccine will not result 
in these problems due to it induces NRT cells activa-
tion directly in  vivo. Furthermore, potential cytokine 
release syndrome requires additional attention in NRT 
cell-based therapy, and IL-1 and IL-6 receptor antago-
nists or blockades are needed to cope with this prob-
lem [187, 188].

Conclusion
The discovery of neoantigens boosts the develop-
ment of individually-tailored immunotherapy, includ-
ing adoptive therapy with T cells. With more efficient 
and precise therapeutic potency, T cells stimulated by 
neoantigens exhibit powerful antitumor capability. 
Based on bio-information technology, T cell screening 
and engineering techniques, modified NRT cells can 
be implemented more economically and conveniently. 
Although the feasibility and safety of NRT-related 
immunotherapy have been verified, the majority of 
researches are still in the initial stage, and the overall 

treatment results are unsatisfactory. Improved meth-
ods have been proposed to meet the urgent demand for 
improvement of therapy effectiveness and development 
of novel platforms as well as of multiple-drug combi-
natorial therapy. Current challenges to adoptive NRT 
cell therapy are the high cost and difficulty in realizing 
individualization, which renders industrial mass pro-
duction unlikely and needs to be solved by future tech-
nological innovation. However, generally speaking, we 
are convinced that NRT cell-based immunotherapy has 
the effectiveness and safety to realize enduring tumor 
elimination and significantly prolonged survival that 
benefit patients with advanced solid tumors.

Abbreviation
ACT   Adoptive cell therapy
AICD  Activation-induced T cell death
APC  Antigen presenting cell
CAR-T  Chimeric antigen receptor-T cell
CDC  Collecting duct carcinoma
CR  Complete response
DC  Dendritic cell
ECM  Extracellular matrix
HCC  Hepatocellular carcinoma
ICD  Immunogenic cell death
ICI  Immune checkpoint inhibitor
MDSC  Myeloid-derived suppressor cell
MHC  Major histocompatibility complex
MICA/B  MHC class I polypeptide–related sequence A/B
Neo-DCVac  Neoantigen dendritic cell vaccine
NeoVax  Neoantigen vaccine
NRT cells  Neoantigen-reactive T cells
PBMC  Peripheral blood mononuclear cell
PR  Partial response
REP  Rapid expansion protocol
SD  Stable disease
TAA   Tumor associated antigen
TAM  Tumor-associated macrophages
TCR   T cell receptor
TIL  Tumor infiltrating lymphocyte
TLS  Tertiary lymphoid structure
TME  Tumor microenvironment
TSA  Tumor specific antigen
VEGFR  Vascular endothelial growth factor receptor
WES  Whole exome sequencing
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