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Introduction
IL-17 family cytokines have been shown to play a pivotal 
role in host defense against extracellular pathogens and 
inflammatory responses. Most members of the IL-17 
family are disulfide-linked homodimers, with a molecu-
lar weight of the monomer ranging from 17 to 21  kDa. 
IL-17 family members can bind to its receptors for sig-
naling, and each IL-17R subunit constitutes a unique pro-
tein [1–3]. IL-25, also named IL-17E, is a member of the 
IL-17 family and was originally discovered via a sequence 
alignment of human genomic DNA sequence data [1]. In 
humans, the IL25 gene is located on the q-arm of chro-
mosome 14 (14q11.2). Murine Il25 is located on chro-
mosome 7 and can encode 169 amino acids, with an 80% 
sequence homology to humans [1, 4]. Although IL-25 
was initially found to be secreted primarily by T helper 
2 (Th2) cells, a variety of other tissues and cells includ-
ing lung and colon epithelial cells, alveolar macrophages, 
eosinophils, basophils, and mast cells have been identi-
fied as cellular source of IL-25 [1, 3, 4]. In addition, IL-25 
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Abstract
Interleukin-25 (IL-25), also known as IL-17E, is a cytokine belonging to the IL-17 family. IL-25 is abundantly 
expressed by Th2 cells and various kinds of epithelial cells. IL-25 is an alarm signal generated upon cell injury or 
tissue damage to activate immune cells through the interaction with IL-17RA and IL-17RB receptors. The binding 
of IL-25 to IL-17RA/IL-17RB complex not only initiates and maintains type 2 immunity but also regulates other 
immune cells (e.g., macrophages and mast cells) via various signaling pathways. It has been well-documented 
that IL-25 is critically involved in the development of allergic disorders (e.g., asthma). However, the roles of IL-25 in 
the pathogenesis of other diseases and the underlying mechanisms are still unclear. This review presents current 
evidence on the roles of IL-25 in cancers, allergic disorders, and autoimmune diseases. Moreover, we discuss the 
unanswered key questions underlying IL-25-mediated disease pathology, which will provide new insights into the 
targeted therapy of this cytokine in clinical treatment.
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functions to promote the expression of cytokines asso-
ciated with type 2 immunity, such as IL-4, IL-5, IL-13, 
and thymic stromal lymphopoietin (TSLP) [1, 4–7]. The 
cellular targets of IL-25 include T cells, myeloid lineage 
cells, and non-hematopoietic cell populations (e.g., fibro-
blasts and mesenchymal cells) [1, 3, 4]. Previous studies 
have suggested a strong relationship between IL-25 and 
cancer, inflammation, and autoimmune diseases [8, 9]. 
Therefore, this review aims to provide a comprehensive 
summary of recent findings on the role of IL-25, encom-
passing topics such as:

 	• IL-25 receptors, related signaling pathways, cellular 
sources, and related cytokines.

 	• Roles of IL-25 in cancer, allergic conditions, and 
autoimmune diseases.

 	• IL-25 as a prospective target for clinical therapy.

Introduction of IL -25
IL-25 receptors
The IL-17 receptor (IL-17R) family consists of five recep-
tor subunits, comprising IL-17RA-IL-17RE. The IL-25 
receptors consist of a heterodimer composed of IL-
17RA/IL-17RB [1–3]. IL-17RB (IL-17BR), also known 
as IL-17 receptor homolog 1 (IL-17Rh1) or EVI27, was 
the first identified receptor for IL-25. In previous stud-
ies, researchers found some new receptors that might 
be related to IL-17R. To identify candidate receptors, 
expressed sequence tags were examined for sequences 
related to IL-17R. On the basis of one such group 
of expressed sequence tags, a cDNA was found that 
encoded a 502-amino acid single transmembrane protein 
that shared 26% amino acid identity to IL-17R. The pro-
tein is then named IL-17Rh1 (IL-17RB) [1–3]. IL-17RB 
is expressed in kidney, liver and other peripheral organs. 
RNA and protein assays have revealed that there are two 
isoforms of IL-17RB, the membrane-bound type and the 
soluble type [3]. Subsequent research has shown that 
the IL-25 receptor also includes IL-17RA. Moreover, IL-
17RA is the largest protein in the IL-17R family and pos-
sesses a unique TILL structural domain. Thus, IL-17RA 
is capable of binding to at least four ligands (IL-17  A, 
IL-17 C, IL-17E, and IL-17 F) for signaling. The presence 
of IL-17RA has been detected in mouse spleen, kidney, 
liver, lung, brain, heart, skeletal muscle, and testicu-
lar tissues, as well as in a wide variety of cell lines [3, 5]. 
Splenocytes from IL-17RA-knockout (KO) (Il17ra−/−) or 
IL-17RB-KO (Il17rb−/−) mice ceased to produce relevant 
inflammatory factors (e.g., IL-5 or IL-13) upon in vitro 
stimulation with IL-25. Following an intranasal injection 
of IL-25 in both types of the knockout mice, the inflam-
matory cells such as eosinophils, neutrophils, lympho-
cytes and macrophages did not show any changes. In 
addition, the lung tissue did not display any pathological 
alterations, including inflammatory cell infiltration [3, 6]. 

These results suggest that IL-25 signaling requires both 
IL-17RA and IL-17RB for downstream activation.

Each IL-17R subunit is a single transmembrane domain 
protein with multiple conserved patterns, such as extra-
cellular fibronectin III-like motifs, transmembrane sec-
tions, and similar expression to fibroblast growth factor 
genes (SEF) /IL-17 receptor (SEFIR) domains in cyto-
plasmic [2, 3, 5]. After binding to IL-25, the heterodimer 
composed of IL-17RA/IL17-RB recruits SEFIR-contain-
ing proteins and further activates downstream signaling 
pathways involved in innate and adaptive immunity [2, 5, 
6].

IL-25 signaling pathway
Upon binding to IL-25, the IL-17RA/IL17-RB recep-
tor complex can attract SEFIR-containing proteins, such 
as Act1 (NF-κB Activator 1, Nuclear Factor κB Activa-
tor 1), also known as CIKS. Act1 both exhibits E3 ubiq-
uitin ligase activity and also includes a SEFIR structural 
domain containing a CC’ loop peptide [7, 10, 11]. When 
the SEFIR structural area is deleted in either of the Act1 
or IL-17RB fragments, the interaction between Act1 
and IL-17RB disappeared [12–14]. Moreover, previ-
ous studies have shown a distinctive reduction in the 
Th2 response and lung inflammation in Act1-deficient 
(Traf3ip2−/−) mice compared to the wild-type mice in a 
mouse model of allergic lung inflammation [12]. Further 
studies have shown that an Act1 deletion in epithelial 
cells could alleviate IL-25-induced allergic lung inflam-
mation [12, 13, 15].

The tumor necrosis factor receptor-associated fac-
tor (TRAF) family members are also engaged in IL-25 
signal transduction through Act1. Act1 recognizes and 
ubiquitinates TRAF adapters, which are subsequently 
recruited into the receptor complex to participate in the 
activation of downstream signaling pathways. In addi-
tion, Act1 recruits a substantial amount of TRAF6, which 
is essential for IL-25-mediated activation of the down-
stream nuclear factor-κB (NF-κB) pathway [16–18]. The 
binding of Act1 to TRAF6 also promotes the activation 
of the activator protein 1 (AP-1) downstream protein, 
basic leucine zipper transcription factor, activating tran-
scription factor-like (BATF). In intestinal helminth infec-
tion, tissue-resident group 2 innate lymphoid cells (ILC2) 
modulated mucosal barrier homeostasis by responding to 
tuft cell–derived IL-25. BATF promoted IL-4 and IL-13 
expression by ILC2 upon IL-25 stimulation, causing a 
type 2 immune response to alleviate inflammation. The 
aforementioned two pathways are essential for the par-
ticipation of IL-25 in the progression of various diseases 
[19–21]. In contrast, IL-25 failed to activate the NF-κB 
pathway in Traf6−/− mice [18] (Fig. 1).

TRAF4 is also activated by Act1 and participates in 
the activation of IL-25 signaling. Studies have shown 



Page 3 of 16Yuan et al. Biomarker Research           (2023) 11:36 

that the expression of Th2 cytokines in the airways of 
Traf4−/− mice is reduced, even with the stimulation of 
IL-25 [22, 23]. Moreover, TRAF4 can recruit E3 ligase 
smadubiquitin regulatory factor 2 to degrade Deleted 
in Azoospermia-associated protein 2 (DAZAP2), an IL-
25R inhibitory factor. In contrast, silencing DAZAP2 
increases the interaction between Act1 and IL-25R, as 
well as the responsiveness of IL-25. Therefore, TRAF4-
Smadubiquitin regulatory factor 2 (SMURF2) -medi-
ated DAZAP2 degradation represents a key initiating 
event for the IL-25 response. TRAF4-SMURF2-mediated 
DAZAP2 degradation following IL-25 stimulation can 
promote JAK2-mediated phosphorylation of Y444 and 
Y454, resulting in STAT5 recruitment to the IL-17RB 
subunit [22–24]. However, IL-25 failed to phosphorylate 
ERK1/2 and P38 in primary T cells and epithelial cells 
from Traf4−/−mice, and did not activate the MAPK path-
way [22, 23] (Fig. 1).

IL-25 signaling can also be mediated by other path-
ways. For instance, the deletion of STAT5 was found to 
result in a defective Th2 response associated with IL-25 
in epithelial cells [19, 25]. IL-25 has been reported to pro-
mote the proliferation of keratin-forming cells in the skin 
via the JAK1/2 and STAT3 pathways in a mouse model of 
psoriasis, inducing large amounts of inflammatory cyto-
kines and chemokines in the skin of the mice [26, 27]. 

In investigations related to liver cancer, IL-25 was found 
to maintain the self-renewal of human cancer stem cells 
via the activation of STAT3 and NF-κB [26–29]. More-
over, IL-25 selectively recruits the tumor necrosis factor 
receptor 1 (TNFR1) associated death domain protein 
(TRADD) adapter protein and Fas-associated death 
domain (FADD), which consequently activate caspases 
and induce the apoptosis of target cells [2] (Fig. 1).

In conclusion, IL-25 can bind to the receptor and acti-
vate multiple downstream signaling pathways, including 
NF-κB, MAPK, JAK and STAT3, which play diverse roles 
in self-renewal, survival and apoptosis of cells as well as 
inflammation, tumor progression.

Cellular sources of IL-25
IL-25 was initially considered as a Th2 cell-derived factor, 
since the identification of its mRNA expression in highly 
differentiated Th2 cells in gastrointestinal tract and 
uterus of mice in 2000 [6]. Subsequently, the production 
of IL-25 by bone marrow-derived mast cells upon IgE 
crosslinking was discovered, thereby demonstrating that 
mast cells also produce IL-25 [30]. In addition, alveolar 
macrophages during particle induced lung inflamma-
tion produced IL-25. to promote lung inflammation [31]. 
Notably, activated eosinophils and basophils from allergic 
subjects could expressed IL-25. The IL-25 has biological 

Fig. 1  The signal pathway of IL-25. IL-25 binding to the receptor complex IL-17RA/IL-17RB can recruit adapter proteins, then mediate the signal transduc-
tion, such as Act1. Act1 can influence TRAF6 to induce inflammatory responses via the transcription factors NF-κB and AP-1. TRAF4 is also activated by 
Act1, which would activate not only the MAPK pathway but also its dependent DAZAP2 degradation leading to STAT5 recruitment to the IL-17RB subunit. 
TRADD and FADD are also recruited by the IL-25/IL-25R complex, and they mediate apoptosis. IL-25 might activate the JAK and STAT3 pathways, which are 
associated with cell survival. The image is produced by Adobe Illustrator
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activity and enhances the function of Th2 memory cells 
[7]. Further studies revealed that epithelial cells at differ-
ent sites of inflammation could also express IL-25. The 
transcripts of IL-25 is present in skin keratinocytes [32, 
33]. Subsequently, study found that keratin-forming cells 
from skin in psoriasis patients could express IL-25 and 
also express IL-25R [33] (Fig. 2).

Tuft cells are a type of intestinal epithelial cell that can 
secrete IL-25 [34–37]. Additionally, Tuft cells from the 
intestine can secrete cysteinyl leukotrienes (cysLTs) [38, 
39]. Further studies have shown that IL-25 and cysLTs 
can selectively mobilize NF-kB and nuclear factor of 
activated T cells (NFAT) transcription factors for ILC2 
activation [37–39] (Fig.  2). The above signaling cascade 
is essential for intestinal remodeling and helminth clear-
ance. Interestingly, a subpopulation in mouse medul-
lary thymic epithelium can express several characteristic 
makers including Dclk1, Sox9, Trpm5, and Pou2f3, and 
might secrete IL-25 in high quantities [35, 40, 41] (Fig. 2). 
Further investigation may provide in-depth understand-
ing of the role of thymic tuft cells and IL-25 in shaping 
type 2 immune responses.

Cytokines associated with IL-25 functionality
IL-17 A
IL-17  A has been the most frequently studied member 
of IL-17 cytokine family. IL-17 A is known to participate 
in the pathogenesis of multiple diseases (e.g., psoriasis, 
rheumatoid arthritis [RA], and contact hypersensitiv-
ity) [42–44]. Among the IL-17 family members, IL-25 
appears to be the most diverged member of the family. 
IL-25 shares just 16% sequence homology with IL-17 A, 
while IL-17 F has the highest homology (55%) with it. IL-
17B, IL-17 C, and IL-17D share sequence homology from 
23 to 29% with IL-17 A [3, 45–47] (Table 1).

Both IL-17 A and IL-25 can bind to IL-17RA and sub-
sequently recruit Act1 to further activate the NF-κB 
pathway through the TRAF family [7, 12, 14–17, 26] 
(Table 1). However, the specific participating members of 
the TRAF family differ, whereas the same members are 
differentially expressed in the pathways downstream of 
IL-25 and IL-17  A. For example, as shown above, both 
TRAF4 and TRAF6 could participate and promote the 
activation of IL-25 downstream signaling pathways [12–
18]. In addition to TRAF6, the downstream activation 
of IL-17 A combined with Act1 involves other members 
of TRAF family, including TRAF2, TRAF3, and TRAF5 
[18, 22, 48, 49] (Table 1). However, TRAF4 functions as 

Fig. 2  IL-25 is produced by various cell populations under different conditions. Th2 cells, mast cells, and macrophages are all capable of secreting IL-25 
(Part A). Epithelial cells have been a major source of IL-25. Keratin-forming cells could produce IL-25 and IL-25R, which in combination further promote the 
progression of psoriasis (Part B). IL-25 and cysLTs from intestinal tuft cells could rapidly activate ILC2 by activating AP-1, followed by selective mobilization 
of NF-κB and NFAT, to clear the intestinal inflammation caused by helminth infection (Part C). One subpopulation of mouse thymic epithelial cells could 
generate IL-25 and further participate in thymic immunity (Part D). The image is produced by Adobe Illustrator
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a negative regulator during IL-17  A-mediated signaling 
and inflammatory responses. The underlying mechanism 
has been shown to be due to TRAF4 competing with 
TRAF6 for the binding domain of TRAF on Act1 dur-
ing IL-17 A downstream signaling. Therefore, the activa-
tion efficiency of both TRAF6 and the subsequent NF-κB 
pathway is substantially diminished [23] (Table 1).

Antimicrobial peptides produced by keratinocytes 
is the first line of host defense against infection. Previ-
ous studies have revealed that IL-17  A could assist in 
the host defense against pathogens (e.g., Staphylococcus 
aureus) in the skin. In vivo studies, IL-25 was different 
from IL-17 A. The host resistance to pathogens was not 
impaired in the mice deficient for IL-25 in the epidermis 
compared with the wild-type mice [50–54]. These results 
suggest that IL-25 dose not participate in the antimicro-
bial response and it also dose not affect the antimicrobial 
function of IL-17 A (Table 1).

In some specific cases, IL-25 can affect the expres-
sion of IL-17  A. Previous studies have demonstrated 
that while IL-17  A could induce and promote chronic 
skin inflammation, the precise mechanism remained 
unclear [45]. Further studies revealed that mice injected 
with recombinant mouse IL-25 were able to induce 
skin inflammation. Furthermore, Il17a−/−mice injected 
with recombinant mouse IL-25 still induced psoriasis. 
In the Il25−/−mouse model of psoriasis, the expression 
of IL-17 A was reduced, which may be attributed to the 
reduced recruitment of IL-17  A-producing γδ T cells 
in psoriasis-like skin inflammation. The above findings 
further demonstrated that IL-25 could induce psoriasis 
independently and participate in regulating IL-17  A in 
the progression of psoriasis [26, 50–54]. In contact der-
matitis, IL-1β produced from skin dendritic cells could 
promote the activation of Th17 cells by IL-25, resulting 
in an increased level of IL-17 A expression, which in turn, 
induced the local inflammation [44]. A similar association 

has also been found to exist in gastrointestinal disorders. 
Il25−/−mice exhibit a higher degree of inflammation in 
the gastrointestinal tract, which induces elevated expres-
sion of IL-17  A [55–58]. Nevertheless, IL-25 was found 
to antagonize the pro-inflammatory effects of IL-17 A in 
both mouse models of collagen-induced arthritis (CIA), 
a mouse model for human RA, and experimental auto-
immune encephalomyelitis (EAE), a mouse model for 
human multiple sclerosis (MS), thereby inhibiting the 
Th17 response and decreasing the degree of inflamma-
tion [9, 59, 60] (Table 1).

In conclusion, in some diseases where IL-17  A exerts 
pro-inflammatory effects, IL-25 may exhibit synergistic 
or inhibitory effects. Although IL-17RA is a co-recep-
tor for IL-25 and IL-17 A, IL-25 requires binding to the 
receptor IL-17RA/IL-17RB complex, whereas the recep-
tor complex for IL-17  A also includes IL-17RC [26]. 
Therefore, there may be differences between the expres-
sion of IL-25 and IL-17  A together with the associated 
receptors in various pathological states or target cells. 
However, the relationship between IL-25 and IL-17 A has 
not been set in stone.

IL-17B
IL-17B is a non-covalent dimeric glycoprotein consist-
ing of 180 amino acids and a molecular weight of 41 kDa. 
IL-17B has been found to be expressed in neuronal cells, 
chondrocytes, germinal center (GC) B cells, and both 
naive and memory B cells [61]. Previous researches 
showed that IL-17B might share the receptor IL-17RB 
with IL-25 [2, 62, 63]. When researching the effect of 
IL-25, IL-17B is an essential cytokine.

Both IL-17B and IL-25 are expressed by colonic epithe-
lial cells and upregulated following acute colonic inflam-
mation. However, the deficiency in IL-25 was protective 
against dextran sulfate sodium (DSS)-induced colitis 
and a defective expression of IL-17B exacerbated the 

Table 1  Commonality and differences between IL-25 and IL-17 A
Comparative targets IL-25 IL-17A References
Biological Features Homology The homology of IL-25 to IL-17A is 16%. [3, 45–47]

Form of generation In the form of disulfide-linked dimers. [1–3]

Cellular sources Th2 cells, mast cells, macrophages, etc. Th17 cells [1, 2]

Factors associated with 
signalling pathways

IL-17RA The co-receptor [5, 7]

TRAF6 Participate in the activation of the NF-κB pathway. [12, 18]

Act1 Be recruited into IL-25 and IL-17A related signalling pathways. [7, 10–14]

TRAF4 Mediate signaling downstream. Compete with 
TRAF6 for the 
TRAF binding 
domain on Act1

[22, 23]

Performance in differ-
ent diseases

Psoriasis Participate in promoting psoriasis progression. [26, 50–54]

Contact hypersensitivity IL-25 promotes higher IL-17A expression [44]

Experimental autoimmune 
encephalomyelitis

IL-25 could work as a receptor antagonist of IL-17A function. [59]

Rheumatoid arthritis [60]
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development of acute colitis. IL-25 stimulated colorectal 
cells to produce IL-6, an important colonic inflammatory 
factor, while IL-17B inhibited IL-6 expression. Further-
more, the IL-17B deficiency was found to be pathogenic 
for Citrobacter rodentium infection, which resembled 
DSS-induced colitis, whereas Il25−/− mice were protected 
against Citrobacter rodentium  infection. It was also 
shown that IL-25 could strongly promote allergic airway 
inflammation by enhancing the Th2 cell response, while 
IL-17B inhibited the Th2 cell response in the airways [6, 
64]. IL-25 and IL-17B also perform differently in can-
cer. For example, IL-25 was found to inhibit the growth 
of MDA-MB468 breast tumor xenografts, while IL-17B 
promoted their growth [65, 66]. These cases show that, 
although IL-25 and IL-17B are both from the IL-17 fam-
ily, they differ significantly in their biological function. 
Further, the competitive binding of IL-25 and IL-17B may 
lead to antagonistic effects, thereby causing different dis-
ease outcome. Therefore, when researching on the effect 
of IL-25, IL-17B should not be neglected.

IL-9
Interleukin-9 (IL-9) is a type of pleiotropic cytokine pro-
duced by a variety of cells, including Th9, Th2, Th17, and 
mast cells [67]. In addition, IL-9 has recently been found 
to contribute to the initiation and/or amplification of 
type 2 immune response at mucosal sites (e.g., asthma 
and parasitic infections) [67–70].

Current studies have shown that IL-25-stimulated den-
dritic cells rapidly induced mediators, such as the chemo-
kine CCL17, which, in turn, attracted IL-9-producing T 
cells during allergic lung inflammation [71]. In another 
study, after a repeated exogenous lung infusion with 
IL-25, there was a large accumulation of ILC2 cells and a 
high production of IL-9, which further aggravated aller-
gen-induced lung inflammation in mice [72–74]. Previ-
ous studies have demonstrated that IL-9 represents a key 
cytokine involved in mediating the effective expulsion of 
T. spiralis [68]. Following Trichinella spiralis infection, 
mice treated with IL-25-neutralizing antibodies failed 
to effectively expel T. spiralis. Moreover, the intensity of 
the antigen-specific Th9 immune response in mice was 
diminished, whereas the expression of IL-9 and related 
regulatory genes were also decreased [75]. The findings 
in the above study demonstrated that IL-25 could prevent 
the destruction by Trichinella spiralis through the induc-
tion of an IL-9-mediated immune response. Therefore, 
IL-25 can affect airway diseases and Trichinella spiralis 
infection through IL-9.

The roles and underlying mechanisms of IL-25 in 
disease pathogenesis
To gain a more comprehensive understanding of IL-25, 
the current status of research on IL-25 in different dis-
eases have been summarized. In particular, the following 
chapters focus on the mode of action and mechanisms of 
IL-25 in various cancers, cascade inflammation triggered 
by type 2 immune response, and autoimmune diseases 
(Table 2).

IL-25 in cancer
Although the mechanisms of cancer pathogenesis are 
highly complex and the causes are difficult to predict, 
extensive research has shown that IL-25 appears to be a 
critical biomarker for tumor progression [9, 76]. In addi-
tion, IL-25 can interact with multiple immune cells in a 
complex tumor microenvironment by initiating both 
innate and adaptive immune responses. The specific 
function of IL-25 is also dependent on different tissues 
or organ-specific tumors or various stages of the disease, 
demonstrating both tumor-supportive and tumor-sup-
pressive effects [9].

IL-25 is distinctly dysregulated in cancer. IL-25 was 
detected in hepatocellular carcinoma (HCC), colorectal 
cancer (CRC), gastric cancer, oral squamous epithelial 
cell carcinoma, and multiple myeloma at a higher level 
compared to that of healthy individuals [77–81]. In the 
above cancer patients, the more advanced the cancer, the 
higher the level of IL-25, suggesting that IL-25 might be 
associated with disease progression. In contrast, IL-25 
was downregulated in malignant breast and prostate can-
cers, it was negatively correlated with cancer severity [82, 
83]. IL-25 was also low expression in the neutrophil and 
lymphocyte of B cell leukemia (B-CLL), and the varia-
tion in IL-25 might be associated with the development 
of B-CLL [84].The above results indicate that the expres-
sion of IL-25 varies substantially in different types of 
cancer. The dysregulation of IL-25 is also correlated with 
the degree of tumor cell infiltration and the prognosis of 
cancer patients, providing a reference for further clinical 
studies.

Mechanism of IL-25 in tumor progression
In the majority of cancers, IL-25 functions to support the 
tumor. During tumor progression, IL-25 primarily pro-
motes the proliferation and metastasis of tumor cells by 
activating various signaling pathways, including NF-κB 
and STAT3 [85]. IL-25 can also contribute to the malig-
nant proliferation and differentiation of tumor cells by 
interfering with cell cycle and mediating interactions in 
various cells [85–87].

In HCC, dysbiosis of gut microbiota results in hyper-
plasia of tuft cells, these cells would secret large amounts 
of IL-25. Then IL-25 might stimulate macrophages to 
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release CXCL10, which then activated the epithelial-
mesenchymal transition (EMT) pathway [77]. Through 
the study of HCC cell lines (Huh7, PLC/PRF/5, HCC cells 
T1115 and T1224) and models, researchers found non-
cancer cell stem cells (non-CSCs) could secrete IL-25 
into the tumor microenvironment, and secreted IL-25 
interacts with IL-17RB on CSCs. [85] (Fig. 3). Resistance 
to chemotherapy in lung cancer patients might also be 
affected by IL-25. Exogenous IL-25 can stimulate the 
expression of Major vault protein (MVP) by activating 
the NF-κB signaling pathway. Since MVP causes chemo-
resistance in lung cancer, an increase in IL-25 and MVP 
would greatly aggravate chemotherapy resistance in lung 
cancer patients [86, 88, 89] (Fig.  3). Therefore, interfer-
ence with IL-25 might represent a potential therapeutic 
strategy for the clinical reversal of chemotherapy resis-
tance. In cutaneous T-cell lymphoma (CTCL), Th2 cyto-
kines and periostin induced IL-25 produced by epidermal 
keratinocytes. Secreting IL-25 into the epidermis acti-
vated IL-25R-expressing T cells. Then IL-25 bound to IL-
25R to promote the polarization of Th2 cells by activating 
the phosphorylated STAT6 pathway. Subsequently, Th2 
cells secreted large amounts of IL-4, IL-5, and IL-13 to 
augmented and created a TH2-dominant microenviron-
ment. The microenvironment would inhibit antitumor 
TH1 responses and promote CTCL [90]. IL-25 might 

promote tumor progression by activating multiple sig-
naling pathways and causing downstream cell signaling 
cascades.

In CRC patients, the levels of IL-25 in serum and tis-
sue were significantly increased. In the CRC mouse 
model, the IL-25-ILC2 axis could activate type 2 immune 
response to shape the tumor microenvironment.The 
IL-25-ILC2 axis also promoted the immunosuppres-
sive effect of myeloid-derived suppressor cells (MDSCs) 
on CD8+ T cells in the colon. This led to a depletion of 
tumor-infiltrating CD8+ T cells and exacerbate colorec-
tal cancer [81]. In summary, the IL-25-ILC2 pathway 
may serve as a novel therapeutic target against CRC in 
the future. IL-25 may also promote the malignant pro-
liferation of breast cancer cells. Study found that c-RAF, 
ERK and p70S6 kinases were phosphorylated in breast 
cancer cells following treatment with IL-25 in several 
breast cancer cell lines (T47D, MCF7, BT-20, and IJG-
1731). Activation of the above pathways can promote 
the accumulation of the low molecular form of cyclin E 
(LMW-E). Increased LMW-E has been demonstrated to 
accelerate the G1/S transition, promote malignant prolif-
eration, and differentiate breast cancer cells [85, 87, 91] 
(Fig. 3). Thus, IL-25 is capable of promoting tumor devel-
opment by activating multiple mechanistic pathways 
and affect different target cells in the complex tumor 

Table 2  The diverse roles of IL-25 in various diseases
Disease type Role of IL-25 Ref.
Cancer Hepatocellular carcinoma Tumor supportive [77, 85]

Colorectal cancer [81]

Lung cancer [86]

Cutaneous T-cell lymphoma [90]

Melanoma Tumor suppressive [93]

Autoim-mune 
diseases

DSS-induced colitis in mouse Exacerbate the severity of DSS-induced colitis. [64, 120, 121]

Inflammatory Bowel Disease Express decreased in the intestine. [55, 122]

Rheumatoid Arthritis Inhibit the pro-inflammatory effects and osteoclastogenesis. [11, 124]

Collagen-induced arthritis Inhibit activation & differentiation from CD4+ T cells to Th17 cells. [124, 125]

Systemic Lupus Erythematosus Positively correlated with disease activity, anti-dsDNA, and IgG. [127, 128]

Lupus-prone MRL/lpr Relieve SLE symptoms. [127]

Type 1 diabetes mellitus Express high in PBMC. [130]

Non-Obese Diabetic Delay the recurrent autoimmune response. [131]

Primary Sjogren’s syndrome Express high in peripheral blood and SG. [131–133]

Experimental Sjogren’s syndrome Increase salivary flow rate. [134]

Multiple sclerosis Maintain the integrity of BBB. [136]

Experimental autoimmune 
encephalomyelitis

Inhibit inflammatory factors. [59]

Skin diseases Atopic dermatitis Promote the development and progression. [95–[96, 
111]–112]

Psoriasis Increases the severity. [26, 33, 97]

Contact dermatitis Promote the production of associated inflammatory factors. [44]

Airway diseases Allergic airway diseases Promote the development of airway-related diseases. [98–103]

Idiopathic pulmonary fibrosis Induce fibroblast differentiation. Mediate Th2 response. [116]

Hepatitis Protect against and reverse liver injury. [104–107]

Obesity Prevent weight gain and the accumulation of lipids. [108, 109]
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microenvironment. These findings could also provide a 
reference for the clinical treatment of related tumors.

Mechanisms of IL-25 in tumor suppression
Although current studies indicate that IL-25 is primarily 
a tumor-promoting factor, IL-25 may hinder tumor pro-
gression under certain conditions. The study suggested 
IL-25 might be secreted from tumor-associated fibro-
blasts (TAFs). Synthetic dihydrobenzofuran lignan (Q2-
3) could induce elevated IL-25 secretion and increase 
fibroblastic IL-25 activity. The above approaches were 
effective in suppression of mouse 4T1 mammary tumor 
metastasis (a mouse model of breast cancer). [92]. Non-
malignant mammary epithelial cells (MECs) in condi-
tioned medium could produce large amounts of IL-25 
following differentiation. Subsequently, IL-25 inhibited 
the proliferation of breast cancer cells. IL-25 could also 
initiate death signals in breast cancer cells by recruiting 
TRADD and FADD to induce caspase-mediated apopto-
sis [66] (Fig.  3). In the melanoma model, IL-25 induced 
the production of IL-5 by Th2 cells. In the tumor micro-
environment, IL-5 activated CC motif chemokine recep-
tor type 3 (CCR3). CCR3 can induce the chemotaxis of 
eosinophils in the blood and spleen of tumor-bearing 

mice to infiltrate into the tumor site and exert anti-tumor 
activity [93] (Fig. 3).

In conclusion, large amounts of studies indicate a role 
of IL-25 in tumor immunity. Since most studies on the 
mechanism of IL-25 in tumor development have been 
conducted in animal models and cell lines, the precise 
effect of IL-25 in human cancers requires further inves-
tigations. Therefore, translational studies are required 
to determine the biological function of IL-25 in cancer 
development.

IL-25 in allergic inflammation and inflammatory diseases
Accumulating evidence suggests that IL-25 is extensively 
expressed in various epithelial cells. As a “barrier surface” 
cytokine, the production of IL-25 is dependent on exter-
nal stimuli or microenvironmental factors [53, 54]. The 
upregulation of IL-25 may lead to inflammatory diseases, 
including atopic dermatitis, psoriasis or asthma. IL-25 
is involved in enhancing the severity of allergic reac-
tions through the induction of a type 2 immune response 
[94–103]. IL-25 also plays a role in inflammatory dis-
eases including obesity and digestive system disorders 
[104–109].

Fig. 3  IL-25 regulates tumor progression via diverse pathways. In tumor supportive (The left), IL-25 could induce MVP to aggravate chemoresistance. IL-25 
might promote tumor proliferation via LMW-E. And also, IL-25 promotes cancer stem cell self-renewal by inducing JAK/STAT3 signaling pathway. IL-25 
could induce macrophages to secrete the chemokine CXCL10, which in turn activates the EMT. In tumor suppressive (The right), IL-25 mainly induces 
apoptosis in tumor cells by activating caspase enzymes. IL-25 contributes to promote the entry of infiltrating eosinophils into the tumor microenviron-
ment and mediates the killing of tumor cells. MEC, refer in particular to nonmalignant mammary epithelial cells. Black arrow indicates that IL-25 promotes 
the reaction, red arrow indicates that IL-25 inhibits the reaction. The image is produced by Adobe Illustrator
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IL-25 in skin diseases
Atopic dermatitis (AD) is a chronic, relapsing inflam-
matory skin disease that is often associated with poly-
filamentous protein mutations [110]. After stimulated 
by house dust mites, the expression of IL-25 in human 
keratinocytes was increased [111]. The production of 
IL-25 from dermal dendritic cells in AD patients might 
inhibit the synthesis of polysilk protein, which directly 
disrupts the function of the skin barrier [112]. IL-25 also 
increased the expression of pruritogenic endothelin 1 in 
keratinogenic cells via the ERK1/2 and JNK pathways, 
which contributed to the degree of pruritus during the 
onset of AD [94]. In the epidermis of mouse models and 
patients,when suffered from acute and chronic allergic 
skin inflammation, stratum corneum cells also produced 
large amounts of IL-25 in the inflammatory environment 
[95, 96]. IL-25 bound to ILC2 cells increased the infil-
tration of CD4+ T cells and promoted the development 
of inflammation [95]. Therefore, IL-25 is an important 
inflammatory factor that has been found to promote the 
development and progression of AD.

Psoriasis is a chronic inflammatory skin disease [113]. 
Psoriasis has been found to be associated with higher 
level of IL-25 in patients compared to normal subjects 
[32]. Moreover, the researchers genotyped single nucle-
otide polymorphisms (SNPs) in psoriasis patients and 
healthy controls, the IL17E rs79877597 SNP was a modi-
fier of the risk for psoriasis disease severity and psoriatic 
arthritis [97]. An intradermal injection of recombinant 
IL-25 into the ear or dorsal skin of mice was identified 
to induce psoriasis-like pathology, including epidermal 
acanthosis and dermal thickening, dermal immune cell 
infiltration, and pustule formation in the mouse model 
[26]. The above findings emphasize that IL-25 represents 
a prominent factor in the development of skin inflamma-
tion in psoriasis and is expected to be a potential target 
for clinical treatment in the future.

Additionally, patients with contact dermatitis have also 
been observed to exhibit a significant increase in IL-25 
expression, which could promote the production of asso-
ciated inflammatory factors (e.g., IL-5 and IL-13), which 
in turn led to local inflammation [44]. The above stud-
ies demonstrate that IL-25 is one of the critical factors in 
skin inflammation.

IL-25 in airway diseases
Allergic airway diseases (AADs) constitute a heteroge-
neous group of diseases mediated by the Th2 immune 
response, including allergic asthma, allergic rhinitis, and 
chronic sinusitis. Bronchus and lung epithelia upregu-
lated the production of IL-25 in response to various 
stimuli including allergens, fungal antigens, and Toll-
like receptor ligands [98, 99]. In asthma patients, IL-25 
has been found to increase the expression of endothelial 

VEGF/VEGF receptors through the PI3K/AKT and ERK/
MAPK pathways. Activation of these pathways can pro-
mote angiogenesis and exacerbate the development of 
asthma [98]. Instead, blocking IL-25 significantly reduced 
the antigen-induced infiltration of eosinophils and CD4+ 
T cells in the airway [100]. In a mouse model of asthma, 
IL-25 was found to stimulate natural killer T cells to pro-
duce inflammatory factors (e.g., IL-13), thereby promot-
ing airway hyperresponsiveness [101]. The combined 
activity of IL-25 and IL-33 could further enhance the Th2 
response in patients with chronic rhinitis and nasal pol-
yposis [102]. After a combined blockade of IL-25, IL-33, 
and TSLP, the expression of inflammatory factors and 
level of airway fibrosis were reduced in the mouse model 
[103]. In allergic rhinitis, as a kind of nasal epithelial-
derived proinflammatory cytokines, IL-25 mainly pro-
moted the production of type 2 cytokines IL-5 and IL-13 
from Th2 and ILC2, but the pathway may be affected by 
IL-35. IL-35 can inhibit the production of IL-25 from 
human nasal epithelial cells induced by Dermatophagoi-
des pteronyssinus and Aspergillus fumigatus [114, 115]. In 
conclusion, IL-25 could regulate the occurrence of type 2 
immune responses in a variety of innate or adaptive cells 
and promote the development of airway-related diseases.

On the other hand, IL-25 plays a critical role in epi-
thelial-mesenchymal crosstalk and local tissue remodel-
ing. When these responses are dysregulated, it can cause 
tissue fibrosis and lead to many lung diseases. IL-25 was 
upregulated in the alveolar epithelial cells and lung fibro-
blasts of patients with idiopathic pulmonary fibrosis. The 
upregulation of IL-25 was positively correlated with the 
degree of inflammatory infiltration and fibrosis [116]. 
IL-25 can directly induce fibroblast differentiation to dis-
rupt the lung environment and mediate Th2 response to 
produce large quantities of pro-inflammatory cytokines 
(e.g., IL-5 and IL-13). Subsequently, inflammatory factors 
induced fibroblasts to further accumulate and differen-
tiate, resulting in exacerbated pulmonary fibrosis [117, 
118]. Therefore, IL-25 may be a potential target for the 
treatment of airway and lung-related diseases.

IL-25 in other inflammatory diseases
In hepatitis patients and a mouse model of fulminant 
hepatitis, IL-25 was found to protect against and reverse 
liver injury by promoting an increase in MDSCs, which 
effectively inhibited the activation of immune cells [104, 
105]. In addition, following intestinal helminth infec-
tion, IL-25 regulated type 2 cytokines to alleviate chronic 
inflammation in the gastrointestinal tract [106, 107]. 
Therefore, IL-25 plays a role in combating inflammation 
in the digestive system.

The administration of IL-25 to high-fat diet (HFD)-fed 
wild-type mice significantly improved hepatic steatosis 
[108]. In the obese mouse models, IL-25 enhanced lipid 
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uptake by macrophages and also increased the mito-
chondrial respiratory capacity and oxygen consumption 
rate of macrophages. Thus, IL-25 can effectively prevent 
weight gain and the accumulation of lipids [109]. The 
above studies demonstrate the potential of IL-25 for the 
treatment of obesity and related metabolic syndrome.

IL-25 in autoimmune diseases
During the development of autoimmune diseases (e.g., 
systemic lupus erythematosus [SLE], RA, inflammatory 
bowel disease [IBD], and Sjogren’s Syndrome [SS]), auto-
immune responses can lead to inflammation and tissue 
damage [2]. IL-25 is actively involved in the progression 
and prognosis of autoimmune diseases.

Inflammatory bowel disease
IBD is a type of chronic inflammatory disorder affecting 
the gastrointestinal tract. IBD patients may present with 
symptoms, such as chronic diarrhea, rectal bleeding, 
abdominal pain, and weight loss [119]. It was found that 
Il25−/−mice treated with DSS were associated with sig-
nificantly lower weight loss, colonic ulceration, and histo-
logical score compared to the control group. Exogenous 
IL-25 could upregulate the expression of relevant inflam-
matory factors, such as IL-33, IL-6 and TNF-α, in colonic 
epithelial cells. This experiment suggested that IL-25 
could exacerbate the severity of DSS-induced colitis [64, 
120, 121]. While IL-25 could promote the development 
of IBD in animal models, the findings in patients with 
IBD are contrary. Studies found that IL-25 was decreased 
in the intestine from some IBD patients compared to 
healthy individuals, which may affect the expansion of 
Th17 and Th1 cells in the intestine [55, 122]. Therefore, 
further clinical studies are pending to verify the precise 
effect of IL-25 in patients with IBD (Fig. 4).

Rheumatoid arthritis
RA is a chronic systemic autoimmune disease, which 
leads to joint deformity and loss of function [123]. Clini-
cal studies have found that the level of IL-25 was upregu-
lated in the serum and synovial fluid of RA patients [124]; 
however, the increase of IL-25 contributed to the reduc-
tion of inflammatory response and disease severity in RA 
patients. In studies of RA patients, IL-25 was found to 
inhibit the pro-inflammatory effects of IL-17 A by com-
peting for binding to the IL-17RA receptor, but could also 
inhibit osteoclastogenesis through STAT3 and p38MAPK 
pathways in RA [11, 59]. In mice, IL-25 could inhibit the 
activation and differentiation from CD4+ T cells to Th17 
cells, which in turn attenuated the progression of CIA 
(Fig. 4). However, the level of IL-25 was found to be sig-
nificantly higher in CIA mice compared to that in wild-
type mice as the disease progresses [124, 125]. Therefore, 
the exact role of IL-25 in RA requires more researches.

Systemic lupus erythematosus
SLE is an autoimmune inflammatory disease involving 
multiple organs, with lupus nephritis as the most seri-
ous complication [126]. Previous studies have shown 
that IL-17 A was critically involved in the progression of 
SLE [127]. Several studies reported that the serum level 
of IL-25 was higher in patients with SLE, especially in 
patients with lupus nephritis. In particular, IL-25 was 
positively correlated with disease activity, anti-dsDNA, 
and IgG [127, 128]. Although IL-25 may be involved in 
disease progression in SLE patients, high level of IL-25 
in lupus mice acts a protective effect on disease progres-
sion. Administration of IL-25 relieved SLE symptoms 
in lupus-prone MRL/lpr mice, including the decline of 
anti-dsDNA and IgG, and the degree of kidney damage 
was also reduced. Additionally, the expression of relevant 
inflammatory factors (e.g., IL-1α, IL-1β, and IFN-β) was 
decreased in lupus-prone MRL/lpr mice [127] (Fig.  4). 
Thus, the precise role of IL-25 in the development of SLE 
still requires future investigation.

IL-25 in other autoimmune diseases
Type 1 diabetes mellitus (T1D) is a metabolic disorder 
syndrome [129]. In a study of T1D patients, the expres-
sion of IL-25 was found to be noticeably increased in 
the peripheral blood mononuclear cells (PBMC) of T1D 
patients compared to healthy individuals [130]; however, 
exogenous IL-25 could restore blood glucose levels in 
newly diabetic animals, and notably delay the recurrent 
autoimmune response after islet transplantation in the 
Non-Obese Diabetic (NOD) mouse model. Some studies 
have also found that IL-25 might alleviate T1D by inhib-
iting the Th17 response [56, 131] (Fig. 4). Therefore, fur-
ther clinical studies are required to investigate the effect 
of IL-25 on the pathogenesis of T1D.

Primary Sjogren’s syndrome (pSS) is a chronic autoim-
mune disease characterized by dry eyes, dry mouth, and 
other clinical manifestations [132, 133]. The level of IL-25 
in peripheral blood and salivary gland (SG) was particu-
larly high in patients with pSS. Following IL-25 stimula-
tion, PBMC from pSS patients displayed a higher level of 
autoantibodies. Moreover, IL-25 was detected in tissue 
cells in the submandibular gland, mostly acinar and duc-
tal cells in mice. The quantity of IL-17RB+ ILC2 cells in 
SG and peripheral blood were also increased in vitro and 
in a mouse model. The salivary flow rate of experimental 
Sjogren’s syndrome mice was enhanced following anti-
IL-25 therapy. These findings suggest that IL-25 might be 
a potential therapeutic target for SS [134] (Fig. 4).

Multiple sclerosis (MS) is the most common type of 
central nervous demyelinating disease, occurring in the 
optic nerve, spinal cord, and brainstem [135]. Il25−/− 
mice were highly susceptible to EAE. After the knock-
down of IL-25, the numbers of inflammatory IL-17  A, 
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IFN-γ, and TNF-α-producing T cells that invaded 
the central nervous system (CNS) were increased in 
EAE mice. Th17 and Th1 cell-mediated inflammatory 
responses were also suppressed, the degree of inflam-
mation in EAE mice was alleviated following exogenous 
IL-25 treatment [59]. Study found that IL-25 produced 
from brain capillary epithelial cells (BCEC) during the 
pathogenesis of MS could help maintain the integrity of 
the blood-brain barrier (BBB). IL-25 might downregulate 
the expression of related inflammatory factors (IL-1β and 
IL-17 A) through the phosphorylation of protein kinase 
C epsilon (PKCϵ) phosphorylation pathway [136] (Fig. 4). 
Therefore, IL-25 may serve as a mitigating agent in MS.

Therapeutic targeting for clinical treatment
Recent studies have indicated that selective blockade of 
IL-25 may represent a promising therapeutic approach 
for treating inflammatory diseases and cancers.

In a highly malignant spontaneous breast tumor model, 
a blockade of IL-25 suppressed tumor-infiltrating CD4+ 
T cells and macrophages, to prevent breast tumor inva-
sion and subsequent lung metastasis [137]. Cisplatin is a 
powerful anticancer reagent frequently used to treat dif-
ferent types of solid tumors. Cisplatin down-regulates 
IL-25 and IL-25R in patients, which effectively blocked 
the promotional effects of IL-25 on cervical cancer cell 
viability, migration, and invasion [138]. In addition, the 
administration of anti-IL-25 monoclonal antibodies dur-
ing the sensitization phase in mice with allergic asthma 
was effective in relieving symptoms, including decreased 
levels of IgE in the serum, suppression of eosinophil infil-
tration, and a significant decrease in airway hyperrespon-
siveness [139, 140]. Combined blockade treatment with 
soluble IL-25R and IL-13R protein inhibitors significantly 
suppressed innate and adaptive immune responses and 
promoted tissue remodeling in asthmatic mice [140]. 
Similar findings have also been found in autoimmune 
diseases. In studies related to psoriasis treatment, bro-
motalizumab effectively resisted IL-17RA, which would 
prevent the signaling of IL-25 and IL-17  A [141–144]. 
Rituximab was conformed to treat pSS by blocking the 
expression of IL-25 [92]. In conclusion, these findings 
indicate that selective blockage of IL-25 is an effective 
treatment for a variety of diseases, which may provide 
supportive evidence for clinical trials in the future.

Currently, most studies on the selective blockade of 
IL-25 have focused on animal models and preclinical 
investigations, further clinical investigations on the roles 
of IL-25 in various inflammatory disorders and cancers 
are needed to validate IL-25 as a therapeutic target in the 
future.

Conclusion
As a member of the IL-17 family, IL-25 binds to the 
receptor complex (IL-17RA/IL-17RB) and exerts differ-
ent effects in various types of diseases. Moreover, IL-25 
can activate a series of signaling pathways, including 
the NF-κB, MAPK, and JAK pathways. IL-25 from vari-
ous cells (e.g., Th2 cells and various epithelial cells) can 
activate many immune cells and induce the release of 
pro-inflammatory cytokines, which further contributes 
to the progression of tumors and various inflammatory 
diseases. In addition, the dysregulation of IL-25 signaling 
participates in cancer progression by affecting cell cycle 
changes, resisting apoptosis, and assisting pro-tumor 
cytokines. IL-25 can also promote the infiltration of 
eosinophils and CD4+ T cells into the airways and skin by 
promoting a type 2 cytokine response, which may even 
induce pulmonary fibrosis during allergic inflammation. 
In autoimmune diseases, IL-25 is elevated and associated 
with an increased level of autoantibodies in the periph-
eral blood of patients. It has been shown that IL-25 exac-
erbates autoimmune disease progression in many mice 
models, including SS and IBD.

The positive effect of IL-25 in numerous allergy and 
respiratory disorders has currently been established. 
Since most studies on the mechanism of IL-25 in tumor 
development have been conducted in animal models 
and cell lines, the exact role of IL-25 in human cancer 
still needs to be supported by a large amount of clinical 
data. Numerous earlier studies have shown the immu-
nomodulatory potential of IL-25 in disease pathogen-
esis, and IL-25 is expected to be a biomarker that reflects 
the severity or progression of different diseases. IL-25 is 
involved in a variety of diseases (cancer, inflammation, 
and autoimmune diseases), so IL-25 has potential in 
explaining disease pathways, drug/disease interactions, 
and offering reference for associated research of clini-
cal treatment. However, clinical application of target-
ing IL-25 is still lacking. Blocking IL-25 or its receptors 
may be considered in future clinical trials. The use of 
combination therapies based on IL-25 may show prom-
ise in related diseases. Currently, a phase I clinical trial 
is undergoing to evaluate the safety of blocking IL-25 in 
healthy adults (NCT05128409). Further study is needed 
to validate the efficacy of IL-25-targeted therapies for 
treating various diseases.
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IL-25	� Interleukin-25
Th2	� T helper 2
TSLP	� Thymic stromal lymphopoietin
IL-17R	� IL-17 receptor
IL-25R	� IL-25 receptor
IL-17Rh1	� IL-17 receptor homolog 1
KO	� Knockout
SEF	� Similar expression to fibroblast growth factor genes
SEFIR	� SEF/ IL-17 receptor
NF-κB	� Nuclear factor-κB
Act1	� NF-κB Activator 1
TRAF	� Tumor necrosis factor receptor-associated factor
AP-1	� Activator protein 1
BATF	� Basic leucine zipper transcription factor, activating transcription 

factor-like
ILC2	� Group 2 innate lymphoid cell
DAZAP2	� Deleted in Azoospermia-associated protein 2
SMURF2	� Smadubiquitin regulatory factor 2
TNFR1	� Tumor necrosis factor receptor 1
TRADD	� TNFR1 associated death domain protein
FADD	� Fas-associated death domain
CysLT	� Cysteinyl leukotriene
NFAT	� Nuclear factor of activated T cell
RA	� Rheumatoid arthritis
CIA	� Collagen-induced arthritis
EAE	� Experimental autoimmune encephalomyelitis
GC	� Germinal center
DSS	� Dextran sulfate sodium
IL-9	� Interleukin-9
HCC	� Hepatocellular carcinoma
CRC	� Colorectal cancer
EMT	� Epithelial-mesenchymal transition
CSC	� Cancer cell stem cell
MVP	� Major vault protein
CTCL	� Cutaneous T-cell lymphoma
MDSC	� Myeloid-derived suppressor cell
LMW-E	� Low molecular form of cyclin E
Q2-3	� Synthetic dihydrobenzofuran lignan
MEC	� Mammary epithelial cell
CCR3	� CC motif chemokine receptor type 3
TAFs	� Tumor-associated fibroblasts
AD	� Atopic dermatitis
AAD	� Allergic airway disease
HFD	� High-fat diet
SLE	� Systemic lupus erythematosus
IBD	� Inflammatory bowel disease. SS:Sjogren’s Syndrome
T1D	� Type 1 diabetes mellitus
PBMC	� Peripheral blood mononuclear cell
NOD	� Non-Obese Diabetic
pSS	� Primary Sjogren’s syndrome
SG	� Salivary gland
MS	� Multiple sclerosis
CNS	� Central nervous system
BCEC	� Brain capillary epithelial cell
BBB	� Blood-brain barrier
PKCϵ	� Protein kinase C epsilon
SNP	� Single nucleotide polymorphism
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