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Abstract 

Background:  Circular RNAs (circRNAs) have been demonstrated to be associated with Alzheimer’s disease (AD). Here, 
we conducted a study to explore whether circRNAs have the ability to differentiate AD from cognitively normal con-
trols and other types of dementia, such as vascular dementia (VaD), Parkinson’s disease dementia (PDD), behavioral 
variant frontotemporal dementia (bvFTD), and dementia with Lewy body (DLB).

Methods:  Three datasets were included in this study to measure blood circRNAs. The pilot study (Dataset 1, n = 40; 
controls, 20; AD, 20) was used to screen differentially expressed circRNAs. Dataset 2 (n = 124; controls, 61; AD, 63) was 
recruited for the establishment of the diagnostic model using a circRNA panel. Further, the Dataset 3 (n = 321; control, 
58; AD, 60; VaD, 50; PDD, 51; bvFTD, 52; DLB, 50) was used to verify the diagnostic model.

Results:  In Dataset 1, 22 upregulated and 19 downregulated circRNAs were revealed. In Dataset 2, a six-circRNA 
panel was found to be able to distinguish patients with AD from controls. Then this panel was applied to Dataset 3 
and successfully differentiated AD from other types of dementia.

Conclusion:  This study suggested that a six-circRNA panel is AD-specific and a promising biomarker of AD.
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Background
Alzheimer’s disease (AD) is the most common neuro-
degenerative disease-causing dementia. AD affects the 
quality of life of patients and imposes a heavy burden 
on their families and society [1]. Currently, diagnosis is 
mainly assisted by neuroimaging or cerebrospinal fluid 
(CSF) biomarkers, which can reflect amyloid beta-pro-
tein (Aβ) deposition and neuronal damage in the brain 
[2]. However, these examinations are expensive, inva-
sive, and time-consuming. In addition, the differential 

diagnosis of AD is difficult. There are similar clinical 
manifestations, pathologies, and biomarkers between AD 
and other dementias such as vascular dementia (VaD), 
Parkinson’s disease dementia (PDD), behavioral variant 
frontotemporal dementia (bvFTD), and dementia with 
Lewy body (DLB) [3]. Therefore, it is necessary to iden-
tify peripheral biomarkers to distinguish AD from other 
types of dementia.

Circular RNAs (circRNAs) are a class of non-coding 
RNA molecules with closed loops [4]. CircRNAs play a 
biological role by sponging miRNAs, regulating intra-
cellular RNA-binding proteins, and participating in 
protein translation [5]. Recent studies have found that 
circRNAs are highly expressed in the nervous system, 
particularly in the brain [6]. They are involved in sig-
nal transduction in the nervous system and the regula-
tion of various neural activities [7]. In terms of stability, 
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specificity and tissue abundance, circRNAs are con-
sidered to be promising biomarkers for monitoring 
AD. Studies have found that there are differentially 
expressed circRNAs in the brain tissue and plasma of 
AD patients [8–10]. However, the results of previous 
studies have been inconsistent [11, 12]. One reason for 
this could be the small sample size of the studies. In the 
study by Li et al., there were only five patients with AD. 
The small sample size of the studies may have caused 
differences in the results. Another possible reason for 
the inconsistencies is the inclusion criteria, which did 
not include CSF or positron emission tomography 
(PET) biomarkers to recruit patients with AD. This 
study used CSF biomarkers to recruit patients with AD, 
and the sample size was relatively large, increasing the 
accuracy of the results.

In this study, we recruited participants for three inde-
pendent datasets and aimed to evaluate whether the 
levels of blood circRNAs (1) can be used to differenti-
ate patients with AD from cognitively normal controls 

and (2) can effectively discriminate AD from VaD, PDD, 
bvFTD, and DLB.

Materials and methods
Experimental design
For the three sets of data, a total of 485 subjects were 
included in this study (Tables 1, 2 and 3, Additional file 1: 
Fig. S1). Dataset 1 participants were recruited from a Bei-
jing center for the pilot study (n = 40; controls, 20; AD, 
20); Dataset 2 participants were recruited from centers 
in the provinces of Shandong, Henan, and Guangxi for 
the development of the diagnostic model (n = 124; con-
trol, 61; AD, 63); Dataset 3 participants were recruited 
from the Beijing Center for the validation of the model 
(n = 321; control, 58; AD, 60; VaD, 50; PDD, 51; bvFTD, 
52; DLB, 50). The diagnosis of AD was based on the cri-
teria of the National Institute on Aging and Alzheimer’s 
Association (NIA-AA) [13]. We additionally used a cut-
off value for the phosphorylated tau (P-tau)/Aβ42 > 0.14 
in CSF to distinguish patients with AD from normal 

Table 1  Characteristics of participants in dataset 1

The values of age, education year, MMSE, Aβ42, T-tau, and P-tau are shown as mean (SD)

Abbreviations: AD Alzheimer’s disease, VaD vascular dementia, PDD Parkinson disease dementia, bvFTD behavioral variant frontotemporal dementia, DLB dementia 
with Lewy body, ApoE ε4 apolipoprotein ε4, MMSE Mini-Mental State Examination, SD standard deviation
* P < 0.05 compared to controls

Characteristic Total Sample (n = 40) Controls (n = 20) AD (n = 20)

Age, mean (SD) 69.6 (5.5) 69.7 (6.5) 69.4 (4.5)

Education year, mean (SD) 9.3 (2.2) 9 (2.1) 9.6 (2.4)

Women, No. (%) 20 (50.0) 10 (50.0) 10 (50.0)

ApoE ε4 positive (%) 12 (30.0) 4 (20.0) 8 (40.0)*

MMSE score, mean (SD) 24.3 (5.3) 28.8 (0.5) 19.8 (3.8)*

Aβ42, mean (SD), pg/ml 568.7 (219.1) 736.5 (189.1) 400.9 (59)*

T-tau, mean (SD), pg/ml 486.9 (206.5) 315.6 (56.7) 658.1 (150.2)*

P-tau, mean (SD), pg/ml 96 (51.3) 62.3 (34.5) 129.7 (42.5)*

Table 2  Characteristics of participants in dataset 2

The values of age, education year, MMSE, Aβ42, T-tau, and P-tau are shown as mean (SD)

Abbreviations: AD Alzheimer’s disease, VaD vascular dementia, PDD Parkinson disease dementia, bvFTD behavioral variant frontotemporal dementia, DLB dementia 
with Lewy body, ApoE ε4 apolipoprotein ε4, MMSE Mini-Mental State Examination, SD standard deviation
* P < 0.05 compared to controls

Characteristic Total Sample (n = 124) Controls (n = 61) AD (n = 63)

Age, mean (SD) 69.2 (6.8) 68.9 (6.9) 69.5 (6.8)

Education year, mean (SD) 9.4 (2.3) 9.6 (2.0) 9.2 (2.5)

Women, No. (%) 63 (50.8) 31 (50.8) 32 (50.8)

ApoE ε4 positive (%) 37 (29.8) 11 (18.0) 26 (41.3)*

MMSE score, mean (SD) 24.8 (4.6) 29 (0.6) 20.8 (2.9)*

Aβ42, mean (SD), pg/ml 543 (217.1) 723.1 (152.1) 368.5 (90.7)*

T-tau, mean (SD), pg/ml 478.1 (198.3) 331.0 (97.7) 620.5 (163.9)*

P-tau, mean (SD), pg/ml 89.3 (59.3) 52 (30.6) 125.4 (58.1)*
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controls, which was confirmed in our previously pub-
lished data [14, 15]. Based on the Amyloid/Tau/Neuro-
degeneration (ATN) framework, low Aβ42 levels in CSF 
are considered to be the key pathological changes in AD 
[16]. Consequently, the CSF Aβ42 level of 500 pg/mL was 
included as another inclusion criterion [17]. VaD [18], 
PDD [19], bvFTD [20], and DLB [21] were diagnosed 
according to the previously published criteria. However, 
other dementias may have overlapping clinical manifesta-
tions, pathologies, and biomarkers with AD, making the 
clinical diagnosis difficult. To avoid confounding AD with 
other dementias, patients with VaD, PDD, bvFTD, and 
DLB who met the cutoff values for P-tau/Aβ42 and Aβ42 
in AD were excluded. The Institutional Ethics Board of 
Xuanwu Hospital, Capital Medical University, approved 
this study, and written informed consent was obtained 
from all participants or their legal representatives before 
enrollment.

RNA collection and sequencing
The participants fasted for 12 h before blood samples 
were collected in the morning. We collected 20 mL of 
whole blood in a polypropylene tube containing EDTA. 
Whole blood samples were processed immediately at 
the Beijing Center. At the other centers, the collected 
samples were preliminarily processed to obtain the 
plasma. Samples were centrifuged at 4200×g at room 
temperature for 10 min, the plasma was collected, kept 
at 4 °C, and delivered to the Beijing Central Laboratory 
within 12 h. Total RNA was isolated using the miRNe-
asy Serum Kit (Qiagen, USA) according to the manu-
facturer’s instructions. One microgram of total RNA 
was used to prepare the sequencing library (quanti-
fied with a Nano Drop 8000 [Thermo Fisher Scientific, 
USA] and Agilent 2100 bioanalyzer [Agilent, USA]). An 

additional 3 μg of total RNA was treated with DNase I 
to degrade double- and single-stranded DNA. To fur-
ther purify poly-A RNA, we used the Ribo-off rRNA 
Depletion Kit (Vazyme, Inc.) to deplete ribosomal 
RNA and RNase R (New England Biolabs Inc., USA) 
to remove linear RNA. Agencourt RNAClean XP mag-
netic beads were used for purification. All procedures 
were performed according to the manufacturer’s proto-
col. Two methods were used to qualify the library: the 
Agilent 2100 bioanalyzer was used to test the distri-
bution of the fragment size, and BMG (OMEGA) was 
used to quantify the library. Finally, BGISEQ-500 (BGI-
Shenzhen, China) was used to sequence the pair ends 
for the qualified libraries.

CircRNA data analysis
To filter the sequencing data, we applied SOAPnuke 
(v1.5.2) in the following three ways [22]: 1) remov-
ing reads that contain sequencing adapters; 2) remov-
ing reads with a low-quality base ratio (base quality 
≤5) greater than 20%; and 3) removing reads with an 
unknown base (‘N’ base) ratio greater than 5%. As a 
result, we obtained clean reads and stored them in 
the FASTQ format. HISAT2 (v2.0.4) was then applied 
to map the clean reads to the reference genome [23]. 
Subsequently, fusion genes and differential splicing 
genes were detected using Ericscript (v0.5.5) [24] and 
rMATS (V3.2.5) [25]. We used Bowtie2 (v2.2.5) [26] 
to align the clean reads with the gene set built by the 
Beijing Genomic Institute in Shenzhen, which is a data-
base that includes known and novel coding and non-
coding transcripts. Next, we calculated the expression 
levels of the genes using RSEM (v1.2.12) [27]. Differen-
tial expression analysis was performed using DESeq2 
(v1.4.5) [28] with a Q value of ≤0.05.

Table 3  Characteristics of participants in dataset 3

The values of age, education year, MMSE, Aβ42, T-tau, and P-tau are shown as mean (SD)

Abbreviations: AD Alzheimer’s disease, VaD vascular dementia, PDD Parkinson disease dementia, bvFTD behavioral variant frontotemporal dementia, DLB dementia 
with Lewy body, ApoE ε4 apolipoprotein ε4, MMSE Mini-Mental State Examination, SD standard deviation
* P < 0.05 compared to controls

Characteristic Total Sample (n = 321) Controls (n = 58) AD (n = 60) VaD (n = 50) PDD (n = 51) bvFTD (n = 52) DLB (n = 50)

Age, mean (SD) 68.6 (6.7) 68.8 (7.5) 67.6 (6.8) 69.5 (5.9) 69.6 (7.3) 67.8 (6.9) 68.4 (5.6)

Education year, mean (SD) 9.4 (2.2) 9.1 (1.8) 9.1 (2.2) 9.2 (2.2) 9.4 (2.4) 9.6 (2.2) 10.1 (2.3)

Women, No. (%) 165 (51.4) 29 (50.0) 31 (51.7) 26 (52.0) 26 (51.0) 27 (51.9) 26 (52.0)

ApoE ε4 positive (%) 77 (24.0) 10 (17.2) 25 (41.7)* 12 (24.0) 10 (19.6) 10 (19.2) 10 (20)

MMSE score, mean (SD) 22 (4.2) 29.1 (0.6) 19.6 (2.6)* 19.9 (2.8)* 21.4 (2.6)* 19.7 (2.7)* 21.6 (2.9)*

Aβ42, mean (SD), pg/ml 631.7 (193) 703.8 (123.5) 346.6 (81.6)* 713.5 (123.6) 741.6 (162.4) 706.3 (125.4) 655.1 (120.4)

T-tau, mean (SD), pg/ml 423.8 (148.1) 343.9 (136.9) 596.2 (145.8)* 412.2 (102.6) 369.9 (100.9) 409.9 (110.9) 390.6 (116.8)

P-tau, mean (SD), pg/ml 59.2 (33.5) 52 (23.4) 104.6 (49)* 46.9 (12.9) 50.3 (15.4) 48.2 (11) 46 (12)
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Collection of CSF and measurement of Aβ42, T‑tau, 
and P‑tau
CSF samples were collected immediately after blood 
collection, following international guidelines [29]. Spe-
cifically, the subject was positioned in the left lateral 
position, and a lumbar puncture was performed to col-
lect 15 mL of CSF. CSF samples were centrifuged at 
2000×g for 10 min at room temperature and stored in 
polypropylene tubes at − 80 °C. Enzyme-linked immu-
nosorbent assay (ELISA) kits were used to measure the 
levels of Aβ42, total tau (T-tau), and P-tau181 in the CSF. 
(Additional file 1: Table S1).

Statistical analysis
SPSS v.22 and Stata 13.0 were used to perform the statis-
tical analysis, and the three datasets were analyzed inde-
pendently. Categorical data between groups, such as sex 
and apolipoprotein E (APOE) ε4 distributions, were com-
pared using the χ2 test. Continuous data between groups, 
such as biomarker concentrations, were compared using 
Welch’s t-test or analysis of variance (ANOVAs). To 
select the differentially expressed circRNAs in Dataset 1, 
we used the false discovery rate (FDR) to correct P-values 
and showed the analysis results with Q values. Then, the 
predicted values were generated in Datasets 2 and 3 using 
a binary logistic regression model based on covariates of 
age, sex, education years, and APOE ε4 state, which was 
subsequently used for receiver operating characteristic 
(ROC) curve analysis. Multicollinearity between each cir-
cRNA was calculated using tolerances, variance inflation 
factors (VIFs), eigenvalues, and condition indices [30]. 
All tests were two-tailed, and statistical significance was 
set at P < 0.05.

Results
Participant characteristics
The characteristics of the participants in the three data-
sets are presented in Tables 1, 2 and 3. In the three sets of 
data, the AD and control groups showed no differences 
in age or the male-to-female ratio. In Datasets 1 and 2, 
there were statistically significant differences (P < 0.05) 
between AD patients and controls in APOE ε4 percent-
age, and results of the Mini-Mental State Examination 
(MMSE). Compared to the control group, the MMSE 
scores for VaD, PDD, bvFTD, and DLB in Dataset 3 were 
also reduced (all P < 0.05).

Pilot study
A pilot study was conducted using a comparatively 
small sample group (Dataset 1) to identify altered cir-
cRNAs. The RNA-sequencing results showed that there 
were 1875 circRNAs in the blood of patients with AD 
and the control group, whose read counts exceeded 100. 

CircRNAs with read counts less than 100 were excluded 
from the analysis. We identified 22 upregulated and 19 
downregulated circRNAs in the AD group (Fig. 1, Addi-
tional file  1: Fig. S2) according to fold changes of ≥1.2 
or ≤ 0.80 compared with controls.

Establishment of the predictive model
Dataset 2, with extended samples, was included in the 
development of the diagnostic model. The total 41 differ-
ential circRNAs were confirmed in Dataset 2, supporting 
that the sequencing data revealed in the pilot study were 
significant (Additional file 1, Table S2). The top six upreg-
ulated circRNAs (hsa_circ_0077001, hsa_circ_0022417, 
hsa_circ_0014356, hsa_circ_0051000, hsa_circ_0014353, 
and hsa_circ_0074533) and the top six downregulated 
circRNAs (hsa_circ_0006940, hsa_circ_0089762, hsa_
circ_0089894, hsa_circ_0037139, hsa_circ_0089761, 
and hsa_circ_0079275) were selected for further analy-
ses (Fig. 2). Using diagnosis (AD versus controls; AD as 
positive events, and controls as negative events) as the 
dependent variable and the 12 circRNAs, age, sex, years 
of education, and APOE ε4 status as covariates, we estab-
lished a binary logistic regression model to assess the 
performance of the aforementioned 12 circRNAs in dis-
tinguishing patients with AD from controls. By stepwise 
forward regression, a panel of six circRNAs (upregulated: 
hsa_circ_0077001, hsa_circ_0022417, hsa_circ_0014356, 
hsa_circ_0014353, hsa_circ_0074533; downregulated: 
hsa_circ_0089894, all P < 0.05) entered into the diagnos-
tic model, while other circRNAs, age, sex, years of educa-
tion, and APOE ε4 status were excluded from the model 
(All P > 0.05). Gene ontology (GO) analysis revealed that 
the six circRNAs were involved in biological process, 
cellular component, and molecular function, such cellu-
lar process, metabolic process, immune system process, 
and synapse, which have demonstrated to be associ-
ated with AD [31, 32] (Additional file  1: Fig. S3). Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis showed that PI3K-Akt signaling pathway, insulin 
resistance, and cell growth and death, which are report-
edly to be associated with AD [31, 33, 34]. (Additional 
file 1:Fig. S4). In addition, the six circRNAs also showed 
association with other chronic aging diseases, such as 
cancer, diabetes, infectious diseases, and neurodegenera-
tive diseases (Additional file 1: Fig. S4). In further analy-
sis, age, sex, and years of education were excluded, as 
their P-values in the logistic model were more than 0.05. 
The multicollinearity diagnostics of the six circRNAs in 
patients with AD and controls showed that all tolerances 
were > 0.1, VIFs were < 10, eigenvalues were > 0, and con-
dition indices were < 30, demonstrating that there was no 
significant multicollinearity among the six circRNAs. We 
then evaluated the predictive values of the six-circRNA 
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panel using the ROC curve analysis to validate the diag-
nostic ability of the panel. Further results showed that 
the area under the curve (AUC) of the six-circRNA panel 
(AUC = 0.968, P < 0.001, Fig. 3A) was significantly higher 
than that of a single circRNA (AUCs = 0.636–0.796, 
Fig. 3B), suggesting that the combination of the six circR-
NAs has an excellent diagnostic capacity for AD.

Application of the prediction model
Dataset 3 was used to estimate the differential diag-
nostic capacity for AD from other dementias, includ-
ing VaD, PDD, bvFTD, and DLB. We obtained similar 
results to Datasets 1 and 2; The total 41 differential cir-
cRNAs were confirmed in Dataset 3 (Additional file  1, 
Table  S3). In particular, the levels of hsa_circ_0077001, 
hsa_circ_0022417, hsa_circ_0014356, hsa_circ_0014353, 
and hsa_circ_0074533 were increased, whereas 

hsa_circ_0089894 was decreased in patients with AD 
(P < 0.001; Fig.  4A–F). None of the six circRNAs was 
altered in VaD, PDD, bvFTD, or DLB patients (all 
P > 0.05), indicating that these circRNAs were AD-spe-
cific. ROC analysis revealed a remarkably high AUC 
(0.914–0.966, P < 0.001, Fig.  5A–C), suggesting that the 
panel of six circRNAs can effectively differentiate AD 
from healthy controls and other dementias.

Discussion
The present study generated a panel of circRNAs that 
could distinguish AD patients from controls and other 
types of dementia, including VaD, PDD, bvFTD, and 
DLB. To the best of our knowledge, this is the first effort 
to establish a diagnostic model of circRNAs to differenti-
ate AD from non-AD dementia.

Fig. 1  Heat map of 22 upregulated and 19 downregulated circRNAs in the pilot study (all Q < 0.05, with FDR correction, Dataset 1). Orange and blue 
indicate upregulation and downregulation, respectively. Abbreviations: FDR, false discovery rate; AD, Alzheimer’s disease
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Biomarkers play a crucial role in AD diagnosis [13]. 
Decreased levels of Aβ42 and increased levels of P-tau 
and T-tau in the CSF are considered biomarkers of 
AD. However, this method is limited by its invasive-
ness. Therefore, the use of peripheral blood has received 
increasing attention. With the proliferation of research, 
a series of promising markers have been found in the 
blood, including Aβ42/40 [35], the neurofilament light 
protein (NFL) [36], T-tau [14], P-tau181 and 217 [37], 
and synaptic proteins [15, 38]. Despite their high diag-
nostic efficiency, the popularity of diagnostic technology 
is limited. The collection and measurement of exist-
ing blood markers usually require specialized skills and 
advanced equipment, resulting in an excessively high 
cost. By employing the extensively used technique of 

RNA-sequencing to measure a panel of blood circRNAs, 
our technique can differentiate AD from control and 
other types of dementia, and the analysis of circRNAs in 
the blood is antibody-independent, and minimally inva-
sive. Taken together, our technique may be promising for 
AD screening in older populations.

Recent studies have increasingly implicated circR-
NAs in the pathology of AD [9, 39–41]. Gruner et  al. 
observed that circRNAs in the mouse brain would 
accumulate during the aging process [42]. Differen-
tially expressed circRNAs were also found in brain tis-
sues of patients with AD [9]. Other findings suggested 
that altered circRNAs can alleviate the pathological 
manifestations of AD [40, 43]. One of the mechanisms 
involves sponging miRNAs to reduce their availability 

Fig. 2  Measurements of circRNAs in Dataset 2. hsa_circ_0077001 (A), hsa_circ_0022417 (B), hsa_circ_0014356 (C), hsa_circ_0051000 (D), 
hsa_circ_0014353 (E), and hsa_circ_0074533 (F) were increased in patients with AD, while hsa_circ_0006940 (G), hsa_circ_0089762 (H), hsa_
circ_0089894 (I), hsa_circ_0037139 (J), hsa_circ_0089761 (K), and hsa_circ_0079275 (L) were decreased in AD. Abbreviations: AD, Alzheimer’s 
disease; FC, fold change
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Fig. 3  Establishment of diagnostic panel for AD. (A) ROC curve analysis of the six-circRNA panel (upregulated: hsa_circ_0077001, hsa_circ_0022417, 
hsa_circ_0014356, hsa_circ_0014353, hsa_circ_0074533; downregulated: hsa_circ_0089894). (B) ROC analysis of 12 individual circRNAs. 
Abbreviations: AD, Alzheimer’s disease; ROC, receiver operating characteristic; AUC, area under the curve

Fig. 4  Measurements of circRNAs in control, AD, VaD, PDD, bvFTD, and DLB. hsa_circ_0077001 (A), hsa_circ_0014353 (B), hsa_circ_0022417 (C), 
hsa_circ_0074533 (D), hsa_circ_0014356 (E), and hsa_circ_0089894 (F) were measured. Abbreviations: AD, Alzheimer’s disease; VaD, vascular 
dementia; PDD, Parkinson disease dementia; bvFTD, behavioral variant frontotemporal dementia; DLB, dementia with Lewy body; FC, fold change
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[44]. For example, ciRS-7 inhibits Aβ elimination by 
deregulating miR-7 [44]. MiR-103 is involved in axon 
growth and inhibits neuronal apoptosis, whereas 
circ_0000950 can reduce this effect by sponging [40]. 
By binding to mir-138-5p, circPCCA inhibits the acti-
vation of glycogen synthase kinase-3 β and promotes 
tau phosphorylation [10]. CircRNAs can also function 
by binding to proteins [45]. Chen et  al. suggested that 
circNF1-419 can regulate inflammatory factors and 
the expression of marker proteins such as T-tau, P-tau, 
Aβ42, and APOE [39]. In addition, Ma et al. suggested 
that circTulp4 promotes Tulp4 transcription to regulate 
neuronal differentiation [41]. However, further stud-
ies on the six circRNAs in the diagnostic panel in this 
study are limited. The mechanisms by which these cir-
cRNAs mediate the process of development are unclear. 
We speculated that their regulatory roles in AD path-
ways in the brain make them function as AD-specific 
factors, which may explain why the changes in these six 
circRNAs can differentiate AD from other dementias.

This study had some limitations. First, the design of 
this study was cross-sectional, which is a disadvantage 
in evaluating the performance of these biomarkers. In 
contrast, longitudinal studies can assess the relation-
ship between biomarker levels and cognitive decline 
in patients. Hence, longitudinal studies are required to 
analyze circRNAs. Second, this study was limited by the 
type of participants. To establish a diagnostic model, we 
recruited healthy controls, patients with AD, and other 
types of dementia, but lacked patients with mild cog-
nitive impairment. This will lower the predictive abil-
ity of our method in the development of the prodromal 
stage to possible AD. Finally, using RNA-sequencing to 
measure circRNA is a quantification method that can-
not reveal the absolute levels of circRNAs in the blood, 

making it difficult to compare the absolute levels of cir-
cRNA in our study with others.

Conclusions
Taken together, the findings of this study suggested that 
the six-circRNA panel is a promising biomarker of AD. In 
addition, the diagnostic circRNA panel can make differ-
ential diagnosis between AD and other types of dementia, 
further emphasizing its potential clinical value. However, 
longitudinal studies are needed in further research.
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