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Abstract

Introduction: Earlier studies have shown that lymphomatous effusions in patients with diffuse large B-cell lymphoma
(DLBCL) are associated with a very poor prognosis, even worse than for non-effusion-associated patients with stage IV
disease. We hypothesized that certain genetic abnormalities were associated with lymphomatous effusions, which
would help to identify related pathways, oncogenic mechanisms, and therapeutic targets.

Methods: We compared whole-exome sequencing on DLBCL samples involving solid organs (n = 22) and involving
effusions (n = 9). We designed a mutational accumulation-based approach to score each gene and used mutation
interpreters to identify candidate pathogenic genes associated with lymphomatous effusions. Moreover, we performed
gene-set enrichment analysis from a microarray comparison of effusion-associated versus non-effusion-associated
DLBCL cases to extract the related pathways.

Results: We found that genes involved in identified pathways or with high accumulation scores in the effusion-based
DLBCL cases were associated with migration/invasion. We validated expression of 8 selected genes in DLBCL cell lines
and clinical samples: MUC4, SLC35G6, TP53BP2, ARAP3, IL13RA1, PDIA4, HDAC1 and MDM2, and validated expression of 3
proteins (MUC4, HDAC1 and MDM2) in an independent cohort of DLBCL cases with (n = 31) and without (n = 20)
lymphomatous effusions. We found that overexpression of HDAC1 and MDM2 correlated with the presence of
lymphomatous effusions, and HDAC1 overexpression was associated with the poorest prognosis.

Conclusion: Our findings suggest that DLBCL associated with lymphomatous effusions may be associated
mechanistically with TP53-MDM2 pathway and HDAC-related chromatin remodeling mechanisms.

Keywords: Diffuse large B-cell lymphoma, Lymphomatous effusions, Whole exome, Sequencing, Bioinformatics,
HDAC1, Prognosis
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Introduction
Diffuse large B-cell lymphoma (DLBCL) is the most
common form of aggressive lymphoma, accounting for
approximately 40 % of all lymphoma cases in Taiwan [1],
and about 33 % of cases worldwide. The outcomes of
DLBCL patients are variable and therefore stratification
into low-risk and high-risk groups is helpful for planning
therapy. The development of body cavity effusions in
DLBCL is often an indication of a significant pathologic
process [2], and previous studies have shown the adverse
impact of malignant lymphoma-associated effusions (dir-
ect infiltration or distant metastasis) on survival in
DLBCL patients [3, 4]. Others have reported that
DLBCL patients with tumorous effusions bear an even
worse prognosis than patients with stage IV disease
without effusions [4]. The serous fluids in body cavities
circulate between parietal and visceral vessels; hence, the
development of lymphoma cells in body fluids highlights
the growing capability of the lymphoma cells to acquire
an aggressive metastatic repertoire, including the ability
to migrate, invade, and proliferate.
Conventionally, the identification of cancer behavior

and cancer subtypes is attained by utilizing features de-
rived from gene expression. With the advent of whole-
genome sequencing and whole-exome sequencing, the
list of biological features for identifying cancer behavior
has been significantly expanded. In many studies, others
have integrated whole-exome sequencing data of various
DLBCL biopsy samples to distinguish genetic subtypes
of DLBCL [5, 6]. In addition, several next-generation se-
quencing (NGS)-based studies have been published deci-
phering the genetic mutation profile of DLBCL subtypes
[7–9]. However, the molecular mechanism underlying
the emergence of lymphomatous effusions in DLBCL is
largely unknown.
The accumulation of somatic mutations plays a critical

role in cancer progression [10]. One of the most inform-
ative feature sets to extract the mutational signatures of
different cancer subtypes is the regional mutation dens-
ity (RMD) [11]. Zhang et al. calculated RMD (i.e., the
number of mutations per thousand base pairs per pa-
tient) to investigate its association with different cancer
subtypes. They found that genome-wide RMD profiles
represent distinct patterns between melanoma and
breast cancer subtypes [10]. Others have shown connec-
tions between mutation variations in megabase scale and
functional genomic data obtained from tumor cell-of-
origin, including chromatin accessibility and replication
timing [12, 13]. Although RMD is one of the widely-
used methods for detecting highlighted genes, most mu-
tations are functionally neutral and benign. Only a small
number of the mutations, which are called pathogenic,
can impair molecular function and consequently lead to
cancer [14]. These earlier published findings prompted

us to identify the mutation profile underlying the
effusion-associated lymphomas in DLBCL.
In this study, we compare the genetic profiles across

two groups of patients: those with DLBCL with malig-
nant effusions versus DLBCL patients without effusions
(e.g. lymph node-based disease). For this purpose, we
performed whole-exome sequencing in 9 effusion-based
DLBCL patients and compared them with 22 nodal-
based DLBCL samples. Our goal was to identify genes
that were highly-mutated in the cases of DLBCL associ-
ated with lymphomatous effusions by investigating two
factors: mutation accumulation scores and pathogenicity
of mutations.

Materials and methods
The cases of DLBCL associated with malignant effusions
were derived from the National Cheng Kung University
(NCKU) Hospital and included 9 cases that underwent
whole exome sequencing (WES) (Table 1). All samples
had a tumor load of more than 80 %. The TCGA dataset
comprised WES of 22 DLBCL samples with tumors in
lymph nodes (https://www.cancer.gov/about-nci/
organization/ccg/research/structural-genomics/tcga).
The study was approved by the institutional review
board (NCKUH-A-ER-102-397 and NCKUH-A-ER-105-
483) and was in accord with the Helsinki Declaration of
1975, as revised in 2013.

DNA extraction and quality control of whole exome
sequencing (WES)
7Libraries were prepared according to Illumina’s instruc-
tions accompanying the DNA Sample Kit (Part# 0801 −
0303). Briefly, DNA was end-repaired using a combination
of T4 DNA polymerase, E. coli DNA Pol I large fragment
(Klenow polymerase) and T4 polynucleotide kinase. The
blunt, phosphorylated ends were treated with Klenow
fragment (32 to 52 exo minus) and dATP to yield a pro-
truding 3- ‘A’ base for ligation of Illumina’s adapters
which have a single ‘T’ base overhang at the 3’ end. After
adapter ligation DNA was PCR amplified with Illumina
primers for 15 cycles and library fragments of ~ 250 bp
(insert plus adaptor and PCR primer sequences) were
band isolated from an agarose gel. The purified DNA was
captured on an Illumina flow cell for cluster generation.
Libraries were sequenced on the Genome Analyzer fol-
lowing the manufacturer’s protocols.

Library preparation and sequencing
For the generation of standard exome capture libraries,
we used the Agilent SureSelect XT HS Reagent kit
protocol for Illumina Hiseq paired-end sequencing li-
brary (catalog#G9704K). In all cases, the SureSelect XT
Clinical Research Exome Version 2 (67.29Mbp) probe
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set was used. We used 1 ug genomic DNA to con-
structed library with Agilent SureSelect XT Reagent kit.
The amplification adapter-ligated sample was purified
using Agencourt AMPure XP beads (Beckman Coulter,
Brea, CA, USA) and analyzed on a TapeStation 4200
D1000 screentape. 500 ~ 1000 ng of the gDNA library
was prepared for the hybridization with the capture
baits, and the sample was hybridized for Agilent
hybridization program, captured with the Dynabeads
MyOne Streptavidin T1 (Life Technologie, USA) and
purified using a Agencourt AMPure XP beads. Use the
Agilent protocol to addition of index tags by post-
hybridization amplification. Finally, all samples were se-
quenced on Illumina NovaSeq 6000 Sequencer using
150PE protocol. The bioinformatics analyses and
methods for mutation interpreters are detailed in the
Supplementary Methods.

Mutation accumulation score
Since the main purpose of this study was to compare
two populations of DLBCL samples, we designed a
population-based scoring method by utilizing mutation
accumulation across all of the samples. For a given gene,
we recorded all mutations that occurred in different
samples of the population of interest. In other words, we
maintained a list for each mutation that represented the
samples hosting the mutation (Supplementary Figure
S1A). Each list of a mutation contained n rows, where n
represented the number of samples in a population. If a
mutation existed in a sample, the sample’s correspond-
ing row of the mutation list held the allele frequency of
the sample. Otherwise, number 0 was assigned to the
sample’s corresponding row in the list. Particularly, AFj;i

represented the allele frequency of variant i in sample j.
Since we considered the mutation accumulation, we
took into account the positional distances of the

mutations (the number of base pairs between two muta-
tions). Mutations that occurred in a region, bin, of a
gene had a similar functional impact compared to muta-
tions in other regions [16–18]. Previously, WinBinVec, a
deep learning-based model, revealed that the mutations
of a bin have similar functional impact using a one-
dimensional convolutional neural network [19].
Domanska et al. [20] showed that at small-sized bins,
the very high concentration of mutations made the
kataegis, localized hypermutation, region stand out
clearly. Accordingly, we hypothesized that if a mutation
in a sample has a very short distance to another sample’s
mutation, then they might have a similar functional im-
pact. On the other hand, if the distance of the two muta-
tions is long, then these mutations will likely not have
common functional impact. Based on the hypothesis and
the allele frequency values, we proposed the following
equation to assign a score to each mutation:

Acc ið Þ
score ¼

1
n

Xn

k¼1

AFk;i þ 1
log dmin ið Þ þ 1ð Þ þ 1

;

where Acc ið Þ
score is the accumulation score of mutation i,

n is the number of samples in a population and dmin ið Þ
is the minimum distance of mutation i with its vicinity
mutations (mutations iþ 1 and i� 1):

dmin ið Þ ¼ min d i;i�1ð Þ; d i;iþ1ð Þ
� �

;

where d i;jð Þ is the distance of mutations i and j in base
pairs (bp). Finally, to obtain the accumulation score of a
gene, we selected the maximum accumulation score
across its mutations:

Acc g½ �
score ¼ i ¼ 1…mmaxAcc ið Þ

score;

Table 1 Clinicopathologic features of DLBCL patients with lymphomatous effusions for NGS study

Case Age Sex Subtype
COO

Genetic BCL2 Ki-67 c-MYC Stage Status

S9 56 M ABC EZB + 60–70 % + IIIE Alive

S10 69 M ABC MCD - 60–70 % + IIIE Dead

S11 71 M ABC EZB + > 90 % + IV Dead

S12 52 F GCB EZB - 50–60 % - IV Alive

S13 45 M GCB N1 - > 90 % + IIE Alive

S14 39 M GCB BN2 + 70–80 % - IV Alive

S15 63 F GCB UN + 70–80 % - IIIE Dead

S16 83 M GCB BN2 + 80–90 % + IVE Dead

S17 85 F ABC MCD + > 90 % - IE Dead

Abbreviations: +, positive; -, negative; Subtype of ABC (activated B-cell) or GCB (germinal center B-cell) determined by Hans cell-of-origin (COO) classification [15].
Genetic subtype based on MCD (MYD88 and CD79B mutations), BN2 (BCL6 fusion and NOTCH2 mutation), N1 (NOTCH1 mutation), and EZB (EZH2 mutation and
BCL2 translocation) [6]. All 9 cases had lymphomatous effusions and were negative for Epstein-Barr virus (EBV); Stage, Ann-Arbor staging system
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where m is the number of mutations occurred in gene
g. The accumulation score of a gene represented its sig-
nificance in a population.

Pathogenicity score of mutated genes
In this approach, unlike the mutation accumulation
method, each sample was examined individually. A var-
iety of mutation interpreters and databases have been
designed to help understand the functional significance
of genetic variants concerning their potential impact on
genes and cancers. These tools can distinguish patho-
genic mutations from benign ones using protein se-
quence, biochemical characteristics, and evolutionary
information. Each mutation interpreter leveraged differ-
ent methods and resources to predict the pathogenicity
of a mutation. For this reason, a mutation interpreter
might identify a mutation as benign, while another inter-
preter might detect it as a pathogenic mutation. In this
study, we gathered the results of four different mutation
interpreters (see Supplementary Methods). Our method
prioritized pathogenic mutations rather than benign
ones. For instance, in Supplementary Figure S1B, the
first mutation was reported as benign (-7.8), benign
(-6.2), pathogenic (6.1), and pathogenic (5) by InterVar,
ClinVar, SIFT, and CADD, respectively. Next, we se-
lected the highest score (most pathogenic) as the final
mutation score (e.g., for the first mutation, 6.1 is the
highest score). Finally, for calculating a gene score, we
summed up all mutation scores in which their pathogen-
icity scores were higher than 0 (pathogenic). The use of
a consensus method for assigning pathogenicity score to
each gene was modified from the CoLaSp model [21].

Gene microarray analysis
The study cohort was composed of two cases of DLBCL
in effusions (40 y/o male with GCB-type DLBCL in asci-
tes and 55 y/o male with ABC-type DLBCL in pleural ef-
fusion) and two cases of DLBCL in solid organs (34 y/o
female with ABC-type DLBCL in anterior mediastinum
and 36 y/o female with GCB-type DLBCL in mediastinal
lymph node). Total RNA was extracted by Trizol Re-
agent (Invitrogen, USA) according to the instruction
manual. Purified RNA was quantified at OD260 nm by
using a ND-1000 spectrophotometer (Nanodrop Tech-
nology, USA) and qualified by using a Bioanalyzer 2100
(Agilent Technology, USA) with RNA 6000 nano labchip
kit (Agilent Technologies, USA). Agilent microarray
hybridization chamber kits were used for experiments
(G2534A, Agilent Technologies, Palo Alto, CA, USA).
Total RNA from DLBCL cells was used to prepare bio-
tinylated RNA according to the manufacturer’s recom-
mendation. Ratios for GAPDH and β-actin (3’/5’) were
within acceptable limits. After RNA isolation, two ali-
quots of 0.2 µg of RNA were linearly amplified and

fluorescently labeled with either Cy3-CTP (DLBCL in ef-
fusions) or Cy5-CTP (DLBCL in lymph nodes) with the
Agilent Low Input Quick Amp Labeling Kit (Agilent
Technologies). Equal amounts (0.3 µg) of cyanine-
labeled samples were hybridized to Agilent 8 × 60 K
Microarray chip (Agilent Technologies) according to the
manufacturer. The microarray was scanned using an
Agilent Microarray Scanner, and the scan was quantified
using Agilent Feature Extraction software (version
10.5.1.1) and normalized using Rank consistency linear
LOWESS with minimum background correction. Differ-
entially expressed gene sets were identified using signifi-
cance analysis of microarrays (SAM) and only those with
positive or negative changes of 2.0-fold or more were in-
cluded. Hierarchic clustering was performed.

Bioinformatics and pathway analysis
Gene Set Enrichment Analysis (GSEA, UC San Diego,
CA, USA) was used to determine the enriched genes
from the cDNA microarray of DLBCL in effusions vs.
DLBCL in solid organs. An enriched score was generated
for each priori defined gene set based on the number of
enriched genes. The settings and parameters are de-
scribed in Table 2. According to an enriched score, we
identified the gene sets that were positively and nega-
tively correlated with the input data. Ingenuity Pathway
Analysis software (IPA, Qiagen, Redwood City, CA,
USA) was used to perform pathway analysis by subject-
ing selected genes. Known functional networks were
tested for enrichment based on canonical pathways, rela-
tionship to upstream regulators, molecular and cellular
functional groups, and associated network functions.

Table 2 The parameters and the settings in Gene Set Enrich
Analysis (GSEA)

Chip Platform Human_Gene_Symbol_with_
Remapping_MSigDB.v7.4.chip

Gene sets database C2.cp.kegg.v7.4.symbols.gmt [Curated]

Number of permutations 1000

Permutation type gene_set

Enrichment statistics Weighted

Metric for ranking genes Signal2Noise

Min size (exclude smaller
sets)

15

Max size (exclude larger
sets)

500

Collapsing mode for probe
sets � 1 gene

Max_probe

Normalize mode meandiv
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DLBCL cell lines and EBV-transformed lymphoblastoid cell
lines (LCL)
To validate the clinical significance of genes yielded
from the above bioinformatic analyses, quantitative real-
time PCR, Western blotting, and immunohistochemical
analysis on clinical samples were performed. The
DLBCL cell lines and LCL (Supplementary Table S1)
were cultured at 37 °C and 7 % CO2 in RPMI 1640
medium (Gibco/BRL, Grand Island, NY, USA) supple-
mented with 10 % heat-inactivated fetal bovine serum
(FBS), 4 mM of glutamine, 75 units/ml of streptomycin,
and 100 units/ml of penicillin. Cell viability was deter-
mined using the trypan blue exclusion test or MTT (3-
[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium brom-
ide) assay.

TaqMan quantitative real time PCR (TaqMan qRCR)
Total RNA of B-cell lymphomas and cells from pleural
fluid of lymphoma patients were extracted by QIAzol
(#79,306, QIAGEN) according to the manufacturer’s in-
struction. One microgram of total RNA was reverse
transcribed into cDNA using High-Capacity cDNA Re-
verse Transcription Kit (#4,368,814, Thermo). Gene ex-
pression was determined by TaqMan quantitative real-
time polymerase chain reaction (qPCR) using ChamGE
Probe qPCR Master Mix (CGE-03, TopGen Biotech). Se-
quences of PCR primers and TaqMan probes are listed
as follows:

TP53BP2 Probe ACAAACTTGCGTAAAACTGGCTC

Forward AAGACTCGGTGAGCATGCG

Reverse CCTCATTCCATGAGCGATACG

SLC35G6 Probe AGGAAAGATGGCTGGCAGTC

Forward CACTCCAACCATGTCACAATGG

Reverse GTCAGGCGGGTTCAAGTAGG

PDIA4 Probe ACTGAAGCCAGTCATCAAATCCC

Forward CATGGAGCCAGAGGAGTTTGAC

Reverse GACGGGTCCCTTGTTGTTCTT

MUC4 Probe AGCTCTTTGAGAATGGGACGTTG

Forward CAATGCTGAGGATGCCAACTT

Reverse TGCTAGAATCTCCAGAGTGAATGG

MDM2 Probe AGAATTGGCTTCCTGAAGATAAAGGG

Forward CACTTCATGCAATGAAATGAATCC

Reverse TGAGTTTTCCAGTTTGGCTTTCT

IL13RA1 Probe ACTTCCCGTGTGAAACCTGATC

Forward AATAATGGTCAAGGATAATGCAGGA

Reverse CATCATTGTGGAAGGAGAGGTTT

HDAC1 Probe ATGGAAATCTATCGCCCTCACAA

Forward CTCACCGAATCCGCATGAC

TaqMan quantitative real time PCR (TaqMan qRCR)
(Continued)

TP53BP2 Probe ACAAACTTGCGTAAAACTGGCTC

Reverse GCTGTGGTACTTGGTCATCTCCT

ARAP3 Probe ACTTACAGCGGCTTCCTGTACT

Forward CTGGCCTCTTGCCCTCAGA

Reverse GAGGGTCCAGCTTTGTTGCT

ACTB Probe AGGCACCAGGGCGTG

Forward ATGTGCAAGGCCGGCTT

Reverse CTCTTGCTCTGGGCCTCGT

Western blot analysis
Total lysates of B-cell lymphomas and cells from pleural
fluid of lymphoma patients were extracted by RIPA lysis
buffer (50 mM Tris-HCl/pH 8.0, 150 mM NaCl, 0.5 %
sodium deoxycholate, 1 % Nonidet P-40, 0.1 % SDS, 1
mM DTT, 10 mM β-glycerol phosphate, and 1 mM
EGTA) supplemented with protease inhibitor cocktail
(P8340, Sigma). Protein concentration is measured using
Protein Assay Kit (#5,000,006, Bio-Rad). Anti-ERp72
(PDIA4) antibody (#2798, Cell Signaling), anti-TP53BP2
antibody (ab181377, Abcam) and anti-α-tubulin (T6199,
Sigma,) were used for western blot analysis.

Immunohistochemical analysis
Immunohistochemical staining was performed on
deparaffinized tissue sections of formalin-fixed material,
pre-treated with the Epitope Retrieval Solution 2 (EDTA,
pH 9.0). The procedures were performed using the
Bond-Max Automated IHC stainer (Leica Biosystems
Newcastle Ltd, Australia). The primary antibodies and
working dilutions were as follows: MUC4 (1:100, 8G7,
mouse monoclonal, Zeta Corporation, Taichung,
Taiwan), MDM2 (1:100, IF2, mouse monoclonal, Invitro-
gen, Thermo Fisher Scientific, Waltham, MA USA), and
HDAC1 (1:400, 4E1, mouse monoclonal, GeneTex,
Hsinchu, Taiwan). Appropriate positive and negative
controls were used. Counterstaining was carried out
with hematoxylin, and images were photographed using
a digital microscope camera (DP12; Olympus Co.,
Tokyo, Japan) and processed by Adobe Photoshop ver-
sion 8.0 software (Adobe Systems Incorporated, San
Jose, CA, USA). The staining was deemed positive when
tumor cells showed nuclear expression of MDM2 in ≥
10 % [22] and HDAC1 in ≥ 50 % [23] of the tumor cells,
as described previously. For MUC4, cytoplasmic staining
in ≥ 10 % of the tumor cells was graded as positive. The
independent cohort of additional 51 DLBCL cases with
(n = 31) or without (n = 20) lymphomatous effusions are
listed in Supplementary Table S2 [4].
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Statistical analysis
Appropriate statistical tests were used to examine the
relationships and correlations between variables,
including χ2-test. Overall survival was measured from
initial diagnosis to death from any cause, with follow-up
data of surviving patients assessed at the last contact
date. Estimates of overall survival distribution were cal-
culated using the method of Kaplan and Meier. Time-
to-event distribution was compared using the log-rank
test. The analyses were carried out using SPSS statistical
software (SPSS, Inc., Chicago, IL, USA).

Results
WES information of 9 effusion-associated DLBCL sam-
ples is provided in Supplementary Table S3. The mean
depth of high-quality sequences on targets ranged from
197.4x to 377.2x, with median 301.9x. Because matched
germline DNA was unavailable, somatic variants were
identified by comparing with genetic variation databases.
Variants present in public and in-house databases (gno-
mAD East Asian and Taiwan biobank) with a minor al-
lele frequency (MAF) > 1 % were filtered out.
Supplementary Figure S2 shows the number of these po-
tentially somatic variants in each sample. A total of
3,919 single nucleotide variants (SNVs, median per sam-
ple: 476, range: 403–555) and 209 insertions/deletions
(indels, median per sample: 30, range: 18–37) showed
potentially protein-changing features (Supplementary
Table S4 Excel file). WES data are available in the Na-
tional Center for Biotechnology Information (https://
submit.ncbi.nlm.nih.gov/), BioProject: PRJNA740363
(https://dataview.ncbi.nlm.nih.gov/object/PRJNA740363
?reviewer=49scseu631s44tsbpgt64h0pmi).

Mutation scoring method distinguishes higher genetic
alterations in migration/invasion-associated pathways in
effusion-associated DLBCL
The routes of lymphoma cells into body cavities might
spread via blood or lymphatic vessels [24]. The serous
fluids in body cavities circulate from parietal vessels to
visceral vessels. Hence, the existence of lymphoma cells
in body fluids highlights the increased capability of the
lymphoma cells to spread. Furthermore, this capability
might be a manifestation of a more aggressive metastatic
dissemination repertoire, such as migration, invasion,
and adhesion. For this reason, we extracted migration/
invasion regulator genes in various pathways. The
extracted genes belonged to the one of the following
pathways or groups: B cell receptor (BCR), NFκB, toll-
like receptors (TLR), focal adhesion kinase (FAK),
BCL10-CARD11-MALT1 (BCM) complex, cytokines,
somatic hypermutation, leukocyte transendothelial mi-
gration, glycoproteins, and transmembrane proteins
(Supplementary Table S5 Excel file).

Next, we compared the accumulation score of the
migration/invasion regulator genes in the above
pathways and groups between the two DLBCL cohorts
(with versus without lymphomatous effusion). As shown
in Fig. 1, the boxplots compare the accumulation scores
of the two cohorts for different pathways and groups.
Interestingly, the genes in boxplots for the effusion-
associated DLBCL cases showed significant higher accu-
mulation scores compared to those of non-effusion-
associated DLBCL cases. The mean score in the
effusion-associated DLBCL dataset was higher than 0.4.
By contrast, the mean value of the accumulation score in
the non-effusion DLBCL dataset was less than 0.2 in
most cases. The Supplementary Table S6 Excel file con-
tains the accumulation scores of all genes in both
datasets.

Identification of the pathogenic and mutated genes in
effusion-based DLBCL samples
Mutations and SNVs are rich sources for detecting the
biomarkers of various diseases. Here, we considered
mutations/SNVs of the samples with tumors in
effusions. The details of the mutations/SNVs of the
effusion-associated DLBCL dataset are listed in Supple-
mentary Figures S3-S6. We obtained the genes affected
by SNVs, indels, or both in at least five samples (Fig. 2 A).
Supplementary Figure S7 shows the stacked bar charts
of SNVs and indels in the effusion-associated and nodal-
based DLBCL cohorts, and Supplementary Figure S8
comprises all genes affected by splice, indels, missense,
multiple hits, stop-loss, and stop-gain mutations in at
least one effusion-associated DLBCL sample. Although
Fig. 2 A and Supplementary Figure S8 contain helpful
information about the genes with their characteristics,
there is no connection between the number of mutations
in a gene and the malignant potential of an abnormal
gene. For this reason, we extracted the genes that were
detected as pathogenic in at least five effusion-associated
DLBCL samples (Fig. 2B). As seen in Fig. 2, MUC4
(pathogenic in 9/9 samples), SLC35G6 (8/9), ARAP3 (7/
9), SLC9B1 (6/9), DDX11 (6/9), MUC16 (5/9), and
HNRNPC (5/9) are reported in both pathogenic and the
mutated genes lists. Surprisingly, all genes that are re-
ported in the two figures are mutated or pathogenic in a
small number of the non-effusion-associated DLBCL
samples except for MUC4, which was also frequently
represented in non-effusion-associated DLBCL and war-
ranted further validation.

Gene set enrichment and pathway analyses
To decipher the gene expression profiling (GEP)
responsible for lymphoma seeding in effusions, we
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additionally used cDNA microarrays to search for
differentially expressed genes between effusion-
associated DLBCL cases versus DLBCL without effusion.
Since both groups of DLBCL cells were from the sites
with different microenvironments, that is, one was em-
bedded in solid matrix and the other floated in effusions,
we carefully excluded genes engaged in microenviron-
ment and matrix remodeling to minimalize the bias. As
shown in Supplementary Table S7 Excel file, the genes
with 1.5-fold changes of expression intensity in the effu-
sion group were consequently subjected to the statistical
simulations and analysis using Ingenuity Pathway Ana-
lysis (IPA) and Gene Set Enrichment Analysis (GSEA)
software to identify canonical pathways.

GSEA analysis showed that chronic myeloid leukemia
(enrichment score (ES) = 0.55; p-value = 0.010), cell cycle
(ES = 0.53; p-value = 0.000), MAPK (ES = 0.45; p-value =
0.007), WNT (ES = 0.57; p-value = 0.006), TGFβ (ES =
0.56; p-value = 0.014), VEGF (ES = 0.80; p-value = 0.000),
TLR (ES = 0.61; p-value = 0.004), and JAK-STAT (ES =
0.50; p-value = 0.044) pathways were significantly acti-
vated in samples of DLBCL associated with lymphoma-
tous effusions (Fig. 3 and Supplementary Figures S9). In
addition, the single-sample analysis (ssGSEA) and Gene
Set Variation Analysis (GSVA) calculating sample-wise
gene set enrichment showed results consistent with
GSEA findings (Table 3). On the other hand, IPA re-
vealed that samples bearing tumor in effusions were

Fig. 1 The comparison of the accumulation scores obtained for different migration/invasion-associated pathways and molecular groups in the
two cohorts: effusion-associated (effusion+) DLBCL and non-effusion-associated (effusion—) DLBCL using boxplots. The accumulation scores for
the migration/invasion-associated genes of the samples with tumors in effusions (> 0.4) are much higher than those bearing tumors in solid
organs such as lymph nodes (< 0.2)
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significantly associated with pathways involving p53 sig-
naling, nucleotide excision repair (NER), checkpoint kin-
ase (CHK) proteins in cell cycle, DNA replication,
sumoylation (SUMO), and p38 MAPK pathways. The
details of each pathway extracted by IPA are shown in

Supplementary Table S8 Excel file. We extracted the
partner proteins involved in the pathways identified by
IPA and GSEA. Figure 4 A illustrates the mutation accu-
mulation scores of these proteins, which were also
present in the NGS dataset. In this figure, we excluded

Fig. 2 Genes affected by mutations in at least five effusion-associated (effusion+) DLBCL samples. (A) The samples containing at least one
insertion/deletion (Indel) mutation, SNV, or both indel/SNV are represented by pink, blue, and green squares, respectively. The bottom of the
figure shows the number of non-effusion-associated (effusion—) samples that contain SNVs and Indels. (B) Genes that have pathogenic
mutation(s) in at least five effusion-associated (effusion+) DLBCL samples. Genes containing benign mutation(s) are shown by green (s < 0). Genes
that have no pathogenic mutation and at least one variant of uncertain significance (VUS) are shown by white (s = 0). Genes that consist of at
least one pathogenic mutation are shown by orange (0 < s < 10), red (10 < = s <= 20), or gray (s > 20) depending on the number of pathogenic
mutations. The more positive score is interpreted as more pathogenic
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the proteins in which their scores in both effusion-
associated and non-effusion DLBCL groups were zero.
The proteins with a higher score in the effusion-
associated cohort compared to the non-effusion-
associated cohort were represented by the purple color.

In contrast, the blue-colored proteins had a higher score
in the non-effusion-associated DLBCL cohort. As seen
in Fig. 4 A, most of the genes identified by GSEA and
IPA had higher accumulation scores in the effusion-
associated DLBCL cohort, that is, the genes in Fig. 4 A

Fig. 3 Gene set enrichment analysis (GSEA) on the gene expression data between effusion-associated DLBCL (effusion+) cases versus DLBCL
without effusion (effusion—) cases. The results on KEGG gene set show that effusion-associated DLBCL is positively associated with the (A) MAPK
signaling pathway, (B) TLR signaling pathway, and (C) JAK-STAT signaling pathway
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were present in both microarray and NGS datasets and
showed higher mutation scores in effusion-associated
DLBCL cohort. In Fig. 4B, we highlighted the six path-
ways most associated with highest/lowest z-score values.
The positive and negative z-score values indicate the ac-
tivation and the inhibition of pathways, respectively, in
the effusion-associated DLBCL cohort. Accordingly, we
found activation of SUMOylation and p38 MAPK path-
ways (Supplementary Figures S10-S11) as well as inhib-
ition/downregulation in cell cycle control of DAN
replication, NER, cell cycle checkpoint control, and p53
signaling pathways (Supplementary Figures S12-S15).

Validation of mutations in selected genes in cell lines and
clinical samples of DLBCL
We validated the expression of relevant genes yielded by
NGS (Fig. 2B) and GEP (Fig. 4B) analyses in different
cell lines and clinical samples of DLBCL. As shown in

Fig. 5 A, quantitative reverse transcription PCR (qRT-
PCR) confirmed the higher expression of SLC35G6,
MUC4, TP53BP2, PDIA4, HDAC1 and MDM2 in most
DLBCL cell lines compared with LCL (lymphoblastoid
cell lines). The mRNA levels of HDAC1, MDM2, and
PDIA4 were highly expressed in most clinical samples in
comparison with β-actin (Fig. 5B). Western blot (WB)
analysis also confirmed that the protein levels of PDIA4
and TP53BP2 were highly expressed in most DLBCL cell
lines (Fig. 6 A) and clinical samples (Fig. 6B). The lack
of available SLC35G6 antibody prevented the validation
of protein expression for this marker (https://www.
antibodypedia.com/gene/82013/SLC35G6).
An independent cohort of 51 DLBCL cases

(Supplementary Table S2) with (n = 31) and without (n =
20) lymphomatous effusions were immunohistochemically
studied to validate the role of MUM4, HDAC1 and
MDM2 overexpression in the formation of lymphomatous
effusions. We found that overexpression of HDAC1

Table 3 Results of Gene Set Variation Analysis (GSVA) and single-sample GSEA (ssGSEA)

GSVA ssGSEA

Signaling pathway E(+)1 E(+)2 E(-)1 E(-)2 E(+)1 E(+)2 E(-)1 E(-)2

MAPK 0.158 0.312 -0.236 -0.244 0.175 0.170 0.061 0.059

Toll-like receptor 0.160 0.168 -0.142 -0.177 0.170 0.177 0.113 0.116

JAK/STAT 0.359 0.208 -0.014 -0.498 0.083 0.076 -0.043 -0.059

Both GSVA and ssGSEA were implemented using “GSVA” package in R

Fig. 4 The accumulation scores of the partner proteins involve in the different pathways identified by IPA and GSEA. (A) The proteins with a high
score in the effusion-associated (effusion+) cohort and non-effusion-associated (effusion—) cohort are represented by purple and blue,
respectively. (B) The pathways that are positively and negatively associated with effusion-associated DLBCL detected by IPA. We highlighted the
six maximum and minimum z-score values. The orange bars (positive z-score) indicate the activation of pathways, and the blue bars (negative z-
score) indicate the inhibition of pathways
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(Fig. 6 C) and MDM2 (Fig. 6D) correlated with the
presence of lymphomatous effusions (Fig. 6E), and
HDAC1 overexpression also was associated with a poorer

prognosis (p = 0.005, Fig. 6 F). The expression of HDAC1
and MDM2 in non-effusion DLBCL cases and survival
analyses for other clinicopathologic factors are shown in

Fig. 5 Validation of mRNA expression level of the interested genes in DLBCL cell lines and clinical samples. (A) Relative mRNA expression of 8
selected genes (MUC4, SLC35G6, TP53BP2, ARAP3, IL13RA1, PDIA4, HDAC1 and MDM2) was measured in different DLBCL cell lines by quantitative
reverse transcription PCR (RT-qPCR) (LCL cells as control). (B) The levels of MUC4, HDAC1, MDM2, PDIA4, TP53BP2 mRNA were analyzed by RT-
qPCR. β-actin gene expression was used as endogenous control. Error bars indicate the standard error of the mean in triplicate
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Fig. 6 Validation of PDIA4, TP53BP2, HDAC1 and MDM2 protein levels in DLBCL cell lines and clinical samples. The protein level of PDIA4, TP53BP2
was evaluated (A) in various DLBCL cell lines and (B) clinical specimens by western blot (LCL cells as control). (C, D) Representative IHC staining of
HDAC1 and MDM2 in an independent cohort of 51 DLBCL cases with (n = 31) and without (n = 20) lymphomatous effusions, respectively. Scale bars
denote 50 μm. (E) The positive correlation between lymphomatous effusions and HDAC1 and MDM2 expression. (F) Kaplan-Meier survival analysis to
compare the cumulative survival rate of all patients with various HDAC1 expression levels
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Supplementary Figure S16. Notably, although MUC4 was
found to be pathogenic in the NGS analysis, all 51 DLBCL
cases were negative for MUC4 expression.

Discussion
In this study, we designed a method that assigned an
RMD-based score to each gene across a population. We
selected the genes that had high score in the cases of
DLBCL associated with lymphomatous effusions and a
low score (≈ 0) in the nodal-based DLBCL cases without
effusions. Furthermore, we utilized four different muta-
tion interpreters to identify pathogenic genes. The genes
that were reported as pathogenic in most effusion-
associated DLBCL samples but were benign in the
nodal-based DLBCL samples without effusions might be
associated with effusion-based DLBCL. Interestingly, we
found that the genes with high RMD-based or pathogen-
icity scores were related to tumor invasion, migration,
and adhesion. Finally, we validated the role of TP53-
related and chromatin remodeling pathways in patho-
genesis of DLBCL lymphomatous effusions in an inde-
pendent cohort. We found that DLBCL-associated
lymphomatous effusions may be associated mechanistic-
ally with TP53-MDM2 pathway and HDAC-related
chromatin remodeling mechanisms.
It is also interesting that the effusion cases harbor

much more Indels and SNVs than the non-effusion cases
(Supplementary Figure S7). These findings are not well-
known. The non-effusion group from TCGA was nodal-
based and analyzed by using Mutect2 to call somatic
variants in tumor and matched normal samples. Variants
with MAF > 1 % in public and in-house databases (gno-
mAD East Asian and Taiwan biobank) were excluded
(filtered) for further analysis. In contrast, for the
effusion-positive group, we used Freebayes to call poten-
tially somatic variants in tumor samples, considered only
exonic or splicing variants, and removed synonymous
SNV. Thus, the possible causes for that the effusion
cases harbor much more Indels and SNVs than the non-
effusion cases are described as follows: first, the filter
strategy: TCGA group first used matched normal tissues
to subtract potential candidate genes but we did not;
second, the tumor cell biology: spreading (metastatic)
tumor cells acquire additional mutated genes to accom-
plish the dissemination process than primary (lymph
node) tumor cells. So, it is reasonable that the effusion
cohort (metastatic tumors) carries much more mutated
genes than the non-effusion cohort (primary tumors).
Focusing on the connection with migration/invasion

pathways is important. Thus, we utilized various
migration/invasion-associated pathways to calculate the
mutation accumulation scores of their regulator genes in
DLBCL with or without lymphomatous effusions. We
found the following pathways more highly activated in

the effusion-associated DLBCL cohort, including BCR,
NFκB, TLR, FAK, BCM complex, cytokines, and glyco-
proteins. Extracellular stimuli activate and phosphorylate
the MEKK1-MKK4 (or MKK7)-JNK-FAK signaling
through FAK (PTK2); next, activated JNK phosphory-
lates Jun, Paxillin, or Spir [25], and phosphorylated Jun
promotes cell migration. Phosphorylation of Paxillin ac-
celerates turnover of cell adhesion, and promotes rapid
cell motility [25]. The phosphorylated Spir also affects
actin dynamics and cell migration. Furthermore, FGF
and EGF growth factors activate FAK via the Ras-Raf-
MEK-Erk-FAK signaling module [25].
One of the major regulators of lymphocyte survival,

proliferation, and activation is the transcription factor
NFκB that provides association between chronic
inflammation and lymphomagenesis. NFκB activation
increases the production of anti-apoptotic factors and
chemokines that trigger the migration of immune cells
to inflammatory foci. These properties promote tumor
cell survival and metastasis, while inhibit apoptosis [26].
The BCL10-CARD11-MALT1 (BCM) complex plays a
key role in forming an essential connection between
NFκB activation and the triggering of cell surface anti-
gen receptors. Genetic and biochemical methods show
that the connection between the BCM complex and acti-
vated NFκB functionally leads to migration and invasion
[27]. The pathways that are involved in activating NFκB
signaling can promote tumor growth. The interaction of
pathogens with Toll-like receptors (TLRs) on the cell
surface is known to activate the NFκB pathway. The ac-
tivation of NFκB results in upregulation of interleukin
(IL)-10, IL-16, IL-2, IL-1, and increased production of
various pro-inflammatory cytokines [28]. The activation
of TLR signaling in tumor cells stimulates metastasis
and enhances the proliferation of cancer cells via angio-
genic factors, such as MMP, VEGF, and IL-8 [29]. In-
flammatory mediators such as cytokines can suppress
the DNA mismatch repair system across various mecha-
nisms, which subsequently result in genetic mutations
[30].
Signaling through the BCR activates the cytoplasmic

domain of integrin, causing a conformational alteration
in the extracellular domain that induces cell migration
[31]. The accumulation of somatic mutations in essential
genes of the BCR pathway highlights the key role of
BCR signaling in DLBCL tumorigenesis. Most CD79A/B
mutations result in deletions of large segments of the
immunoreceptor tyrosine-based activation motif (ITAM)
region [32]. These mutations have been shown to en-
hance BCR surface expression levels [32]. Glycosylation
affects tumor growth and survival and promotes metas-
tasis [33]. Aberrant glycosylation in tumors is linked
with oncogenic transformation and plays a crucial role
in progression, growth, and metastasis [34, 35]. Oliveira-
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Ferrer et al. [35] have shown that glycoproteins influence
distinct stages of the metastatic process, such as migra-
tion and invasion of cancer cells.
We also highlighted the genes affected by mutations

or detected as pathogenic in at least five effusion-
associated DLBCL samples. Here, we discuss the con-
nection between some of the genes with migration/inva-
sion of cells. MUC4 facilitates metastases by promoting
a group of tumor cells that diffuse into the bloodstream.
A study has shown that MUC4 intensifies invasion and
migration potential and promotes metastasis and onco-
genesis [36]. MUC16 increases the invasion, migration,
and proliferation of cancer cells in vitro, and also en-
hances tumorigenesis and metastasis in vivo [37].
ARAP3, which is found in the plasma membrane, is es-
sential for lamellipodia formation after stimulation of
the growth factor signaling on activation of PI3K path-
way [38]. Wang et al. identified that downregulation of
ARAP3 significantly inhibited the invasive and migratory
abilities of thyroid cancer cell lines [39]. TP53BP2
(ASPP2) inhibition accelerates cell migration, invasion,
and epithelial-mesenchymal transition in breast cancer
cells [40]. Notably, although MUC4 was found to be
pathogenic in the NGS analysis, all 51 DLBCL cases
were negative for MUC4 expression. These data high-
light the importance of validating protein expression on
clinical samples. Alternatively, it is possible that MUC4
mutations lead to loss of function.
GSEA analysis revealed that a set of pathways such as

WNT, VEGF, and JAK-STAT were significantly acti-
vated in samples of DLBCL-associated lymphomatous
effusions. Aberrant activation of the WNT pathway pro-
motes abnormal cellular behaviors such as cell motility,
matrix invasion, and tumor progression [41]. Inhibition
of VEGF signaling in colon cancer cell lines strongly in-
hibits cancer cell migration and invasion by regulatory
proteins associated with cell motility [42]. JAK1 is the
main activator of STAT3 in many cellular systems [43].
An earlier study has shown that the JAK-STAT signaling
largely correlates with the invasion and migration [44].
Increased STAT3 expression has been reported in me-
tastases at the leading edges of invasive cancers [45].
IPA analysis identified p53 signaling, nucleotide

excision repair (NER), checkpoint kinase (CHK) proteins
in cell cycle, DNA replication, sumoylation (SUMO),
and p38 MAPK pathways that were significantly
associated with samples bearing tumor in effusions. p53
is a tumor suppressor whose loss perturbs cell-cycle
checkpoints. p53 inhibition also devastates pathways that
reduce metastasis. p53 directly controls the transcription
of genes that are involved in cell adhesion, motility, and
invasion [46]. Dysregulation of p38 is associated with
metastases and low survival rates [47]. Furthermore, a
well-known anti-cancer drug, baicalein, inhibits cancer

cell motility and metastasis through inhibition of the
p38 signaling pathway [48]. The NER signaling pathway
identifies and removes a wide variety of DNA damage.
Aberrations in NER-associated genes have been illus-
trated in several malignancies with a potential impact on
clinical issues [49]. The Ranbp2 protein relates to cancer
cells, and genetic point mutations and translocations are
associated with tumorigenesis [50]. Interaction of
insulin-like growth factor-1 receptor (IGF1R) with
Ranbp2 is essential for IGF1R sumoylation that plays a
crucial role in cancer cell progression [51]. On the other
hand, some polymorphisms of the SUMO-conjugating
enzyme ubc9 are associated with metastasis and invasion
[52]. Furthermore, an increase in AP-1 expression pro-
motes the migration, invasion, and metastasis [53]. DNA
must be replicated precisely before cell division happens.
Defective DNA replication triggers aberrant types of
DNA replication, such as DNA re-replication and un-
scheduled endoreplication, which leads to more aggres-
sive and drug-resistant forms of cancer. The kinases
ataxia telangiectasia and rad3-related protein (ATR),
ataxia telangiectasia mutated (ATM), and checkpoint
kinase 1/2 (CHK1/2) form a crucial DNA damage re-
sponse module at the stalled replication fork, which is
recognized as replication stress. The activation of ATM-
ATR phosphorylates CHK1 and CHK2, which further
activates p53 and other downstream molecules as well as
the response proteins to replication stress [54].
The GSEA and IPA analysis revealed 23 enriched

genes including PDIA4, HDAC1, and MDM2 with
higher mutation accumulation scores in the effusion-
associated DLBCL samples versus the comparison co-
hort. PDIA4 has been reported to act as a promoter of
tissue factor responsible for coagulation, modulating the
function and accumulation of platelets [55]. Stimulated
platelets assist in promoting tumor cell metastasis, pro-
liferation, adhesion, and angiogenesis and keep the
tumor cells away from the immune system [56]. Thus,
PDIA4 might be connection between activated platelets
and tumor progression [57]. PDIA2 is a critical prognos-
tic marker that plays an important role in the drug-
resistance phenotype in ovarian carcinoma [58]. High
expression levels of HDAC1 have been reported in di-
verse cancer types. The expression level of some
histone-related proteins including HDAC1, HDAC2, and
HDAC6 was significantly higher in cases of DLBCL
compared to normal lymphoid tissue. In addition, in-
creased expression of HDAC1 was related to the tumor
aggressiveness and a poorer survival in patients with
DLBCL [59]. In parallel, we found that overexpression of
HDAC1 and MDM2 correlated with the emergence of
lymphomatous effusions, and HDAC1 overexpression
further predicted worse outcome. The p53 tumor sup-
pressor is negatively regulated by MDM2. p53
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transactivates MDM2, and then MDM2, in turn, de-
grades and inhibits p53 activity forming a negative feed-
back loop. MDM2 is reported to be highly expressed in
cancers [60]. A noteworthy strategy to activating p53-
mediated apoptosis in tumors, which overexpress
MDM2 and wild-type p53, is to inhibit the interaction of
the p53-MDM2 [61]. Our findings suggest that DLBCL-
associated lymphomatous effusions may be associated
mechanistically with TP53-MDM2 pathway and HDAC-
related chromatin remodeling mechanisms.
The weakness of our study is a relatively small number

of samples, which is due to the rare occurrence of
DLBCL presenting initially with lymphomatous
effusions. However, we used two methods, WES and
gene microarray, as well as delicate bioinformatics
analyses to decipher the genes responsible for the
pathogenesis of lymphomatous effusions in DLBCL.
Furthermore, we validated our NGS findings with an
additional cohort of clinical samples with or without
tumorous effusions and confirmed the interesting
findings, which warrant further studies with larger,
independent cohorts.

Conclusions
DLBCL is the most common type of lymphoma. A
subset of patients may present with lymphomatous
effusions initially or during disease progression, and is
associated with a poor prognosis of affected patients [4].
In this study we used NGS and GEP to assess effusion-
based DLBCL cells and compared the results to non-
effusion-associated DLBCL cells. The results showed
that effusion-associated DLBCL cells got higher scores
in the BCR, NFκB and TLR pathways and in genes re-
sponsible for leukocyte migration. On the other hand,
IPA highlighted the pivotal role of TP53-related and
chromatin remodeling pathways in DLBCL lymphoma-
tous effusions, which were validated on an independent
cohort. Our findings have shed light on the prognostic
and therapeutic implications for DLBCL patients with
lymphomatous effusions.
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