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Abstract

Deubiquitinases (DUBs) are enzymes that control the stability, interactions or localization of most cellular proteins
by removing their ubiquitin modification. In recent years, some DUBs, such as USP7, USP9X and USP10, have been
identified as promising therapeutic targets in hematological malignancies. Importantly, some potent inhibitors
targeting the oncogenic DUBs have been developed, showing promising inhibitory efficacy in preclinical models,
and some have even undergone clinical trials. Different DUBs perform distinct function in diverse hematological
malignancies, such as oncogenic, tumor suppressor or context-dependent effects. Therefore, exploring the
biological roles of DUBs and their downstream effectors will provide new insights and therapeutic targets for the
occurrence and development of hematological malignancies. We summarize the DUBs involved in different
categories of hematological malignancies including leukemia, multiple myeloma and lymphoma. We also present
the recent development of DUB inhibitors and their applications in hematological malignancies. Together, we
demonstrate DUBs as potential therapeutic drug targets in hematological malignancies.
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Background

The ubiquitin-proteasome system (UPS) regulates many
cellular functions, including proteasomal degradation,
selective autophagy, cell signaling, receptor trafficking
and endocytosis, DNA damage response, cell cycle, cell
survival, cell proliferation and cell death et al. [1-3]. The
dysfunction or dysregulation of UPS is related to a series
of pathologies and diseases, including hematological ma-
lignancies [4]. Inhibiting the activity of components of
the UPS by bortezomib or carfilzomib has been shown
as a therapeutic strategy for the treatment of multiple
myeloma (MM) and mantle-cell lymphoma (MCL) [5].
Indeed, the essential components of the UPS consist of
ubiquitinases, deubiquitinases and 26S proteasome [6].
Until now, many E3 ubiquitin ligases have been impli-
cated in the pathogenesis of hematological malignancies
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[7-10]. Reversely, deubiquitinases (DUBs), contains ~ 100
family proteins, can remove the ubiquitin chains from the
substrates and thereby control the stability, interactions or
localization of the substrates [11, 12]. DUBs are classified
in to six families according to their domain structure: the
ubiquitin-specific proteases (USPs, 58 members), the ubi-
quitin carboxy-terminal hydrolases (UCHs, 4 members),
the ovarian tumor-related proteases (OTUs, 16 members),
the Machado-Joseph disease protein domain proteases
(MJDs, 4 members), the JAB1/PAB1/MPN-domain con-
taining metallo-enzyme (JAMMs, 12 members), and the
motif interacting with Ub-containing novel DUB family
(MINDYs, 4 members) (Fig. 1) [12]. Therefore, more and
more evidences indicate that dysregulation of DUBs plays
an important role in the pathogenesis of hematological
malignancies [13, 14]. Also, some DUBs are important in
the process of differentiation from hematopoietic stem
cells (HSCs) to all blood-cell lineages, and the related dis-
orders are associated with hematological malignancies
[15-18]. However, most of DUBs and their roles in the
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Fig. 1 Human DUBs. Human DUBs are composed of cysteine proteases and metalo proteases. According to their domain structure, DUBs are
classified in to six families: the ubiquitin-specific proteases (USPs), the ubiquitin carboxy-terminal hydrolases (UCHs), the ovarian tumor-related
proteases (OTUs), the Machado-Joseph disease protein domain proteases (MJDs), the JAB1/PAB1/MPN-domain containing metallo-enzyme
(JAMMEs), and the motif interacting with Ub-containing novel DUB family (MINDYs)
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progression of hematological malignancies have not been
explored broadly. In this review, we will focus on the func-
tion of DUBs in different types of hematological malignan-
cies and the development of targeted small molecule
inhibitors.

DUBs in chronic myeloid leukemia

Chronic myeloid leukemia (CML) is a myeloproliferative
neoplasm that accounts for approximately 15% of newly
diagnosed cases of leukemia in adults [19]. BCR-ABL is
responsible for 95% of all diagnosed CML cases, which
acts as a constitutively active protein tyrosine kinase
[20]. Delightfully, most of the CML patients can achieve
complete remission after receiving tyrosine kinase inhib-
itors (TKIs) treatment, and some patients even discon-
tinue the TKIs treatment to achieve treatment-free
remission (TFR) [21, 22]. However, drug resistance and
relapse restrict the application of TKIs in treating CML
through BCR-ABL-dependent and -independent mech-
anism [23]. The BCR-ABL-dependent mechanism is me-
diated through BCR-ABL gene amplification, mutation
of the ABL kinase domain and MDRI1 upregulation [24].
The BCR-ABL-independent mechanism has still not
been well understood until now. Leukemia stem cells
(LSCs) in CML are not dependent on BCR-ABL kinase

activity for their survival and are insensitive to TKIs in a
BCR-ABL-independent manner, therefore leading to re-
lapse [25]. In addition, the aberrant activation of RAS/
MAPK or PI3K signaling pathways also contributes to
BCR-ABL-independent TKI resistance [26, 27]. Some
DUBs have been identified to be associated with BCR-
ABL signaling pathway and others could overcome BCR-
ABL-dependent or -independent TKI resistance. The
DUBs related to CML are shown in Fig. 2.

USP7 is involved in DNA damage response, DNA rep-
lication, epigenetics and viral infections [28]. More im-
portantly, USP7 has been identified as a potential
therapeutic target for a variety of cancers due to its role
in tumorigenesis [29]. Several small molecule specific in-
hibitors of USP7 have been developed [30, 31]. In CML,
USP7 physically interacts with BCR-ABL and is phos-
phorylated (Tyr243) by BCR-ABL. Phosphorylated USP7
gains increased deubiquitinating activity, thus promoting
the nuclear exclusion of phosphatase and tensin homo-
log (PTEN), which disrupts PTEN’s tumor suppressive
function in CML cells [32, 33]. It is also demonstrated
that USP7 interacts with BCR-ABL and blocks its polyu-
biquitination and degradation, thereby inhibiting its
downstream signaling transduction [34]. Furthermore,
USP7 is expressed mostly in the nucleus of normal
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CD34" cells, but in primary CML CD34" cells, it is
expressed both in the nuclear bodies and cytoplasm [35].
Together, USP7 binds to BCR-ABL in the cytosol and
regulates PTEN de-ubiquitination via a PML network in
the nuclear bodies.

USP9X acts as an oncogene or tumor suppressor in
human cancers, and it also plays a role in the context of
normal development and the biological consequences of
the disease [36]. USP9X inhibition by the small molecule
WP1130 induces BCR-ABL ubiquitination and trafficking,
leading to apoptosis in both imatinib-sensitive and -resist-
ant CML cells. Although WP1130 inhibits USP9X activity,
USPIX isn’t involved in the increased ubiquitination of
BCR-ABL. USP9X silencing in CML cells decreases anti-
apoptotic protein MCL-1, which increases sensitivity to
imatinib and other apoptotic stimuli [37, 38].

USP10 is a deubiquitinase of S-phase kinase-associated
protein 2 (SKP2), which interacts with BCR-ABL and is
required for the activation of BCR-ABL in CML. SKP2,
an E3 ligase, enhances the activity of BCR-ABL by pro-
moting the K63-linked ubiquitination of BCR-ABL [39].
Although USP10 deubiquitinates and stabilizes SKP2, it
cannot directly reduce the ubiquitination of BCR-ABL.
Together, USP10 inhibition suppresses the proliferation
of imatinib-sensitive and -resistant CML cells.

USP15 is involved in various cellular pathways associ-
ated with cancer and other related diseases [40]. USP15
is significantly down-regulated in CML, and its inhib-
ition decreases de-ubiquitination of caspase-6 and pro-
motes the degradation of caspase-6, which attenuates

CML cell apoptosis and contributes to imatinib resist-
ance [41].

USP18 (UBP43) is an ISG15-specific isopeptidase, the
expression of which is activated by interferon (IFN) [42].
Usp18-deficient bone marrow cells show significant
delay of CML development in BCR-ABL retroviral trans-
duction/transplantation assay compared with wild-type
ones. However, Uspl8 and IFN receptor R1 (Ifnarl)
double deficient bone marrow cells with p210 BCR-ABL
transduction reverse the original resistance to CML dis-
ease development, which indicates the important role of
type 1 IFN signaling in the resistance to CML develop-
ment in Uspl8-deficient bone marrow cells [43].

USP25 plays an important role in the regulation of in-
nate immune response, autoimmunity and tumorigenesis
by interacting with different tumor necrosis factor
(TNF) receptor-related factor (TRAF) proteins [44].
BCR-ABL degradation has been considered as a strategy
to overcome TKIs resistance, so inhibiting the deubiqui-
tinases of BCR-ABL may be effective. USP25 deubiquiti-
nates and suppresses the degradation of BCR-ABL, and
its depletion inhibits BCR-ABL-mediated signaling and
cell proliferation [45].

USP47 is involved in cell survival [46], cell prolifera-
tion [47, 48], DNA damage repair [23, 49, 50], epithelial-
mesenchymal transition [51], and inflammation [52, 53].
It is demonstrated that Usp47 knockout significantly
prolongs the survival of BCR-ABL and BCR-ABL™L
induced CML mice by reducing leukemia stem/progeni-
tor cells. Mechanism studies have shown that USP47
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deubiquitinates and stabilizes Y-box binding protein
1(YB-1) and participates in DNA damage repair in CML
cells [23]. It is indicated that USP47 is required for BCR-
ABL-induced CML and can overcome BCR-ABL-
independent drug resistance.

A20 expression is significantly downregulated in CML
CD34" cells compared to normal bone marrow CD34"
cells. Overexpression of A20 inhibits cell proliferation,
cell cycle, and promotes apoptosis in CML CD34" cells.
Furthermore, A20 overexpression significantly reduces
the NF-kB signal pathways (P65 and IkBa phosphoryl-
ation) in K562 and CML CD34" cells [54].

BAP1, down-regulated in CML at the transcriptional
level, is a deubiquitinase interacting with the DNA repair
regulator BRCA1 [55]. It is demonstrated that BAP1 is a
major link with the BCR-ABL-induced downregulation
of BRCA1 in CML.

Taken together, targeting some deubiquitinases, such
as USP7, USP9X, USP10, USP15, USP25 and USP47, can
effectively overcome TKIs resistance in CML, and some
deubiquitinases play an important role in maintaining
the self-renewal ability of CML stem/progenitor cells.
For patients with TKIs intolerance or relapse, the use of
deubiquitinase inhibitors alone or in combination with
TKIs may be effective in solving clinical problems.

DUBs in acute myeloid leukemia
Acute myeloid leukemia (AML) is a disease characterized
by the clonal proliferation of primitive hematopoietic stem
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or progenitor cells. The abnormal differentiation of bone
marrow cells leads to an increase in the number of imma-
ture malignant cells and a decrease in the number of dif-
ferentiated red blood cells, platelets and white blood cells
[56]. Although some new drugs are applied in the treat-
ment of AML patients, the standard therapy for AML pa-
tients is still chemotherapy. However, some patients are
intolerable for such treatment, especially elderly patients,
while the effect seems limited [57-59]. Indeed, most pa-
tients receiving chemotherapy experience relapse, which is
caused by chemo-resistant leukemia cells (RLCs) regrowth
[60]. In addition, leukemia stem cells (LSCs) and drug re-
sistance (FLT3 inhibitors, BCL2 inhibitors etc.) are still
difficult problems for the treatment of AML [61-63]. Fur-
ther research on the molecular mechanism of pathogen-
esis will contribute to the therapeutic effect in AML. The
DUBs related to AML are shown in Fig. 3.

USP1 is frequently overexpressed in several cancer tis-
sue types [64]. In AML cells, USP1 deubiquitinates in-
hibitor of DNA binding 1 (ID1) and rescues it from
proteasome degradation, which plays a role in cellular
transformation. USP1 inhibitor, SJB2—-043, promotes ID1
degradation and inhibits primary AML cell growth by
disrupting the homologous recombination [65].

USP2 is identified as a fusion partner of MLL (also
known as KMT2A) in infant acute myeloid leukemia by
using a whole transcriptome sequencing analysis [66].
Another study shows that acute leukemia patients are
recurrently associated with MLL-USP2 fusion alleles as
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Fig. 3 DUBs in acute myeloid leukemia. The red arrows represent oncogenes and the green arrows represent tumor suppressors in AML. USP22
acts as an oncogene or tumor suppressor in AML, depending on the context. The surrounding text describes the substrates or related proteins of
DUBs in AML
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well as MLL fusion partnerships with USP8, AF4, and
AF9 [67, 68]. MLL-USP2 fusion protein can potentially
contribute to MLL-r leukemogenesis through three
mechanisms: (a) USP2 stabilizes MLL to protect it from
ubiquitin-proteasome degradation, (b) dominant nega-
tive inhibition of wild-type MLL transcription, and (c)
regulate cell cycle, cell proliferation or other cell func-
tion by USP2.

USP7, which is known as a PTEN deubiquitinating en-
zyme, directly interacts with nucleophosmin (NPM1)
/mutated nucleophosmin (NPMc+) in AML. NPM1 pre-
vents USP7-mediated deubiquitination of PTEN in the
nucleus, which promotes the shuttle of PTEN to the
cytoplasm. PTEN is kept in the cytoplasm by USP7 deu-
biquitination activity, which is regulated by NPMc+ [69].
Furthermore, USP7 inhibition sensitizes AML to chemo-
therapy by interacting with and modulating CHK1 pro-
tein [70]. Also, USP7 deubiquitinases the non-canonical
PRCI1.1 polycomb complex to target loci and function in
gene regulation in AML cells [71]. Together, USP7 is a
promising therapeutic target in AML.

USP9X inhibits the K63-linked poly-ubiquitination of
FLT3-ITD, while FLT3-ITD reversely phosphorylates
USP9X to enhance ubiquitination and proteasomal deg-
radation. Inhibition of USP9X by its inhibitor WP1130
or G9 shows potent anti-leukemia effects in FLT3-ITD-
driven cells by blocking downstream signaling events of
FLT3 [72].

USP10 is identified as a critical DUB to deubiquinate
and stabilize FLT3-ITD more than wild-type FLT3 in
AML. USP10 inhibition by HBX19818 shows anti-
leukemia effect in FLT3-ITD positive AML cells and
mouse models. It works synergistically with FLT3 inhibi-
tors and overcomes FLT3 inhibitor resistance [73]. An-
other USP10 inhibitor, Wu-5, also shows anti-AML
effect and overcomes FLT3 inhibitor resistance and syn-
ergistically enhances the anti-leukemia effect of crenola-
nib through targeting both FLT3 and AMPKa« pathway
[74]. Spleen tyrosine kinase (SYK), stabilized by USP10,
is critical for AML transformation and maintenance of
the leukemia clone in AML patients. Highly activated
SYK is found in FLT3-ITD positive AML, which facili-
tates Myc transcriptional programs and is critical for
TKI resistance [75, 76]. MLL-USP10 fusion has been
identified in an adolescent case of relapsed AML-M5a
with t (11,16) (q23;q24) [77]. Until now, USP2, USPS,
and USP10 have been found to be fused with MLL,
which indicates that DUBs may be potential targets of
MLL-r leukemia.

The inhibitor of USP14 and UCHLS5, b-AP15, inhibits
organ infiltration in an AML mouse model [78]. Another
compound NiPT, which potently inhibits USP14 and
UCHLS5 activity, induces cytotoxicity and proteasome in-
hibition in AML cells [79]. Aurora kinase B (Aurora B),
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a mitotic checkpoint kinase, has been found to be over-
expressed in several types of leukemia [80]. USP14 in-
hibits chemotherapeutic drugs-induced apoptosis in
leukemia cells by deubiquitinating Aurora B [81].

USP15 is highly expressed in human leukemia cells,
which interacts with and stabilizes FUS in AML cells
[15]. FUS, an RNA/DNA-binding protein, has been re-
ported to promote HSC self-renewal [82]. During normal
hematopoiesis, USP15 depletion impairs hematopoietic
stem and progenitor cells (HSPCs) proliferation in vitro
and reconstitution potential in vivo [15]. In MLL-AF9
leukemia, TIFAB deubiquitination regulated by USP15,
decreases p53 signaling and correspondingly promotes
leukemia cell function and development of leukemia [83].

USP18 was cloned from leukemia fusion protein
AML1-ETO-expressing mice, which blocks cytokine-
induced terminal differentiation of monocytic cells [84].
It is demonstrated that USP18 stabilizes PML/RAR«a
protein and inhibits cell apoptosis in all-trans-retinoic
acid (RA)-sensitive and RA-resistant acute promyelocytic
leukemia (APL) cells [85]. However, other researchers
found that USP18 could oppose UBE1L-dependent
PML/RARa degradation by targeting the PML domain,
rather than RA-dependent PML/RARa degradation [86].

USP22 mRNA expression is significantly induced in
FLT3-ITD compared to FLT3-WT AML CD34" cells by
c-Myc, which leads to reduced ubiquitination and en-
hanced stability of SIRT1 [87]. In contrast, USP22 defi-
ciency blocks myeloid differentiation, therefore promoting
AML in Ras-driven myeloproliferative neoplasm. Mechan-
istically, USP22 deubiquitinates PU.1 and promotes its tar-
get genes expression [88]. Together, USP22 shows
different functions in the process of leukemia transform-
ation or pathology.

USP28 overexpression not only inhibits AML cell pro-
liferation but also sensitizes AML cells to 5'-azacytidine
(5'-AZA)-induced apoptosis. USP28 binds to uridine-
cytidine kinase 1 (UCK1) via KLHL2 (an ubiquitin E3 lig-
ase) and antagonizes KLHL2-mediated poly-ubiquitination
of UCKI1, which has an established role in activating 5'-
AZA [89].

USP37 interacts with the promyelocytic leukemia zinc
finger (PLZF)/the retinoic acid receptor alpha (RARA) fu-
sion proteins and stabilizes its protein levels. Acute pro-
myelocytic leukemia (APL) patients with PLZF/RARA
fusion protein are largely resistant to all-trans retinoic acid
(ATRA) treatment and with poor prognosis [90].

USP42 (intro 1) was found to be fused with RUNX1
(intron 7) (t (7,21)(p22;q22)/RUNX1-USP42) in AML,
but the function of USP42 was unknown [91]. However,
later studies showed that exon 6 or exon 7 of RUNX1
was fused to exon 3 of USP42 with aberrant expression
of CD56 and CD7 [92, 93]. AML patients with RUNX1-
USP42 show poor prognosis [94]. It is suggested that
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USP42 may play an important role in AML-ETO posi-
tive AML patients.

USP48 is involved in ATRA-induced APL cell differen-
tiation. ATRA treatment in APL cell lines causes nucleus
translocation in 24 h and deregulation of USP48. USP48
overexpression inhibits APL cells proliferation and pro-
motes ATRA-mediated differentiation [95].

BRCA1/BRCA2-containing complex 3 (BRCC3) is a
member of the JAMMs family capable of cleaving Lys-63
linked poly-ubiquitin chain [96]. BRCC3 mutations re-
sult in improved proliferation in AML1-ETO positive
AML cell lines and unlimited self-renewal in mouse
hematopoietic progenitor cells in vitro. However,
BRCC3-mutated AMLI1-ETO positive AML patients
show favorable outcome, since BRCC3 inactivation may
lead to an impaired capability of the BRCA1-A complex
to repair DNA damage and subsequently higher sensitiv-
ity to DNA damaging chemotherapy [97]. There may be
significant differences in the pathogenesis of AML be-
tween mice and humans.

A20 expression was up-regulated in AML derived DCs
(AML-DCs), which are differentiated from AML
leukemia cells [98]. Also, A20 expression was increased
during monocyte-macrophage differentiation (THP-1
cell) [99]. However, the expression of A20 was lower in
T cells from patients with AML than those in the
healthy controls [100]. Together, A20 acts as a tumor
suppressor in AML.

BAP1 depletion inhibits the growth of myeloid
leukemia cells with ASXL1 mutations or MLL-fusions.
ASXL1 mutations or MLL-fusions are associated with
poor prognosis in a variety of myeloid neoplasms. Mech-
anistically, the C-terminally truncated mutant ASXL1
(ASXL1-MT) forms a complex with BAP1 and induces
the up-regulation of HOXA gene and IRF8 by removing
H2AK119 ubiquitination [101, 102].

Taken together, some deubiquitinases, such as USP9X,
USP10, USP18 and USP37, are directly associated with
leukemic fusion proteins. Also, other deubiquitinases,
such as USP2, USP8, USP10 and USP42, fuse with
leukemia-associated genes, indicating that deubiquiti-
nases play an important role in the pathogenesis of
AML.

DUBs in acute lymphoblastic leukemia

Acute lymphoblastic leukemia (ALL) is caused by malig-
nant proliferation of lymphoid cells (including T and B
cells) blocked at an early stage of differentiation that can
invade bone marrow, blood and extramedullary sites
[103]. The first-line treatment for ALL is chemotherapy
and typically includes three phases: induction, consolida-
tion, and maintenance [104]. Radiation therapy can be
used for patients with evidence of central nervous sys-
tem (CNS) or testicular leukemia, while allogeneic
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hematopoietic cell transplantation and growth factor
therapy are complementary to all treatments [105, 106].
New immunotherapeutic strategies, such as monoclonal
antibodies and chimeric antigen receptor (CAR) T cells,
are also being developed [107, 108]. However, the man-
agement of ALL in adults and elderly ALL patients (>
60 years old) is still challenging despite the great pro-
gress made in the past decades. The DUBs related to
ALL are shown in Fig. 4.

USP2/USP8-MLL rearrangement is identified in infant
patients with B-ALL [66, 109]. The majority of infant
ALL is characterized by MLL rearrangements (~70 to
80%, with a poor prognosis) in acute lymphoblastic
leukemia. Targeting USP2/USP8 may be important to
improve the outcomes of MLL-rearranged leukemia.

USP7 is identified as a susceptible locus for T-ALL in
a genome-wide association study (GWAS) [110] and is
significantly up-regulated in T-ALL cells [111]. Mechan-
istically, USP7 deubiquitinates and stabilizes NOTCH]1,
which leads to the decrease of the transcriptional levels
of NOTCHI targets and blocks T-ALL cell growth [111,
112]. However, USP7 is frequently mutated in pediatric
T-ALL, with somatic heterozygous loss-of-function mu-
tations (haploinsufficiency) predominantly affecting the
subgroup that has aberrant TAL1 oncogene activation.
Haploinsufficiency of USP7 promotes cell growth and
transcriptionally down-regulates E-proteins targets by
interacting with TAL1 [113]. Specifically, USP7 interacts
with p190 BCR-ABL in Philadelphia chromosome-
positive (Ph+) ALL, and decreased USP7 activity is asso-
ciated with p53 protein stability [114].

USP9X inhibition reduces leukemia cell growth via
repressing mTORCI1 activity, enhances spontaneous
apoptosis and overcomes glucocorticoid resistance in B-
ALL [115]. However, USP9X level is positively associated
with survival in T-ALL patients and knockdown of
USP9X does not induce apoptosis and growth inhibition
in T-ALL cells [116]. It is reported that pharmacological
or genetic inhibition of USP9X, as well as treatment with
low-dose ruxolitinib, may promote the survival of
CRLF2-positive B-ALL with down syndrome (DS-ALL)
cells, potentially by restricting JAK signaling [117].
These findings suggest that USP9X may play different
roles in different types of ALL.

USP24 inhibition significantly induces growth inhibition
and apoptosis in T-ALL cells. WP1130 blocks USP24 ac-
tivity by directly interacting with the activity site pocket of
USP24 in T-ALL cells. Mechanistically, USP24 inhibition
regulates Mcl-1 stability to accelerate the collapse of mito-
chondrial transmembrane potential [116].

USP44 expression is elevated in T-ALL. USP44 over-
expression leads to whole chromosomal instability, as
well as increased cyclin B prior to mitosis, via regulating
Cdc20-APC/C activity [118].
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Fig. 4 DUBs in acute lymphobilastic leukemia. The red arrows represent oncogenes and the green arrows represent tumor suppressors in ALL.
The surrounding text describes the substrates or signaling pathways involved in DUBs of different types of ALL

UCHL1 is decreased in the differentiation process of
the lymphoblastic leukemia cell line, and its expression
is independent of the apoptotic pathway [119]. However,
the mechanism by which UCHLI1 is involved in differen-
tiation has not been elucidated.

A20 is expressed at high levels in ALL patients and
cell lines, which promotes proliferation, regulates cell
cycle progression and induces chemotherapy resistance
[120]. A20 is also overexpressed in adult B-ALL, which
may be related to the pathogenesis of B-ALL [121].

CYLD is significantly down-regulated in primary T-
ALL [122]. Overexpression of CYLD could abolish the
ability of constitutively active Notchl in T-ALL [123].
Interestingly, cleaved CYLD overexpression in normal
human peripheral blood mononuclear cells has the in-
herent capacity to program the genome of these cells
resulting in T-cell lineage ALL [124]. Together, CYLD
acts as a tumor suppressor in ALL.

Taken together, USP7, USP9X, USP24 and USP44
have been shown to promote the development of ALL as
oncogenic genes. However, USP7 and USP9X also act as
tumor suppressor genes in ALL. Therefore, targeting dif-
ferent deubiquitinases may have a role in certain types
of ALL.

DUBs in chronic lymphocytic leukemia

Chronic lymphocytic leukemia (CLL) is the most fre-
quent adult leukemia, which is initiated by specific gen-
omic alterations that impair apoptosis of clonal B-cells
[125]. With the development of kinase inhibitors that
target B-cell receptor signaling, CLL therapy has trans-
formed during the past decade. For example, Bruton’s

tyrosine kinase (BTK) and isoform-selective phos-
phatidylinositol 3-kinase (PI3K) inhibitors disrupt B-cell
receptor signaling. Besides, BCL2 (B-cell lymphoma 2)
has emerged as another important therapeutic target
[126]. New molecularly targeted drugs have shown good
advantages over the previous chemotherapy regimens or
monoclonal antibody regimens for elderly and high-risk
CLL patients. However, drug resistance, side effects and
high costs are currently existing problems.

USP7 is overexpressed in CLL compared with normal
donors. Inhibition of USP7 partially impairs DNA repair
by homologous recombination, which disrupts the stabil-
ity of E3 ligase RAD18 and leads to the accumulation of
DNA damage, therefore killing CLL cells independently of
ataxia telangiectasia mutated (ATM) and p53 [127, 128].
USP?7 is also shown to promote PTEN delocalization from
the nucleus with consequent loss of part of its tumor
suppressive function in a p53 dispensable manner
[129]. Together, targeting USP7 is an effective strat-
egy to kill CLL cells.

CYLD is considerably down-regulated in CLL cells
compared to normal B cells, which correlates with lower
overall survival (OS) in CLL patients [130, 131]. Lymph-
oid enhancer-binding factor 1(LEF1), a downstream ef-
fector of the Wnt/B-catenin pathway, can repress the
transcription of CYLD and down-regulated CYLD in-
hibits TNF-a-induced necroptosis [130, 132]. Moreover,
alternative splicing of CYLD is detected in many B-cell
CLL patients’ samples, which can lead to CD5" B-cell
expansion through sustained NF-«B signaling [133].

A20 negatively regulates NF-kB activity in several
types of B-cell malignancies. However, neither mutations
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nor aberrant DNA methylation is found at the A20 locus
during gene analysis in CLL cells, while the expression
of A20 is normal [134, 135]. These results suggest that
A20 may not play a significant role in the pathogenesis
of CLL.

DUBs in multiple myeloma

Multiple myeloma (MM) is the second most common
hematological malignancy characterized by the accumu-
lation of monoclonal plasma cells that produce M pro-
tein in the bone marrow [136]. The use of novel agents
(such as proteasome inhibitors, immunomodulatory
drugs and antibodies targeting cell surface molecules), as
well as high-dose therapy and autologous stem cell
transplantation (ASCT) in younger patients, has signifi-
cantly improved the prognosis of patients with multiple
myeloma [137]. However, most patients experience mul-
tiple relapses and eventually die of the disease itself or
treatment-related complications, especially the elderly
patients [138]. The discovery of new pathogenesis will
help to develop new therapeutic drugs to overcome the
problems of drug resistance and recurrence. Reports on
the mechanisms by which deubiquitinating enzymes
regulate the pathogenesis of MM have revealed the great
potential for targeting deubiquitinates. The DUBs related
to MM are shown in Fig. 5.

USP1, which participates in DNA damage response
and cell differentiation, is overexpressed in some MM
cases and is associated with poor prognosis. SJB3-019A
is a selective inhibitor of USP1, which can decrease cell
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viability, trigger apoptosis, overcome bortezomib resist-
ance in MM cells, and down-regulate renewal/survival
related proteins and even promote MM stem cells differ-
entiation [139].

USP5 and OTUBLI stabilize c-Maf and promote mye-
loma cell proliferation and survival [140-143], which in-
dicates that USP5/c-Maf or OTUB1/c-Maf axis could be
a potential target for myeloma therapy. Mebendazole
down-regulates the expression of USP5 and disrupts the
interaction between USP5 and c-Maf, which results in
an increase in the level of c-Maf ubiquitination and sub-
sequent c-Maf degradation [140]. MiR-125a inhibits the
expression of USP5, thus reducing the proliferation and
survival of MM cells [144]. Bortezomib-induced periph-
eral neuropathy (BIPN) is one of the most serious side
effects associated with bortezomib treatment [145].
Interestingly, USP5 is found to be upregulated during
this pathological process to stabilize Cav3.2, a T-type
calcium channel essential for BIPN, in the mouse model
[146]. Nanchangmycin (Nam), a polyketide antibiotic, is
identified to inhibit c-Maf activity in the presence of
OTUBI, indicating that Nam has the potential to treat
MM by targeting the OTUB1/c-Maf axis [147].

USP7 overexpression predicts poor prognosis and
USP7 inhibition overcomes bortezomib resistance in
MM [148, 149]. USP7 is involved in bortezomib resist-
ance by stabilizing NEK2 or repressing IxBa, and thus
activating NF-«B signaling pathway [149, 150]. USP7
also promotes MM cell growth and inhibits cell apop-
tosis through other mechanisms. For example, USP7

Caspase and ER stress

Akt pathway

A20

NF-xB pathwa
‘j\ USP15
UCHLS
usp1g USP24 /{

S

NF-xB pathway
Whnt ligands

DNA damage == Suppressor
USP1
c-Maf
USP5
OTUBI1

MM

19S proteasome

Fig. 5 DUBs in multiple myeloma. The red arrows represent oncogenes and the green arrows represent tumor suppressors in MM. The
surrounding text describes the substrates or signaling pathways of DUBs in MM
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stabilizes transcription factor Maf family members (c-
Maf and MafA), which are highly expressed in MM and
contribute to the invasion, adhesion and migration of
MM cells [151]. USP7 stimulates DNA methyltransferase
1 (DNMT1) activity and blockade of USP7 enhances
anti-MM activity of oxidative epigenetic agent RRx-001
[152]. Similarly, P5091, another USP7 inhibitor, inhibits
MM cell growth and increases cell apoptosis both
in vitro and in vivo [148, 151]. Interestingly, other USP7
inhibitors upregulate the transcription of genes that are
normally silenced by the epigenetic suppressor complex
polycomb inhibitor 2 (PRC2) and enhance the activity of
PIM and PI3K inhibitors as well as DNA-damaging
agents [153].

USP9X can remove the Lys48-linked poly-ubiquitin
chains on Mcl-1 and thus prevent its degradation. It also
promotes cell survival and its overexpression in MM is
associated with poor clinical outcomes [154, 155].
USP24 can also stabilize Mcl-1 and promote MM cell
survival independent of USP9X. WP1130, a small mol-
ecule inhibitor targeting USP9X, induces MM cell apop-
tosis both in vitro and in vivo [156]. Other leading
compounds T5165804 and CP2005 inhibit USP9X activ-
ity at higher nanomolar potency against MM cell lines,
compared with WP1130 [157].

USP14 and UCHLS5, targeting the 19S regulatory sub-
unit of the proteasome and affecting the proteasomal
uptake of protein substrate for degradation, are highly
expressed in MM and their inhibition by b-AP15 over-
comes bortezomib resistance [78, 158, 159]. USP14 is in-
volved in cell adhesion-mediated drug resistance (CAM-
DR) of multiple myeloma cells by acting as a bridge be-
tween Bcl-xl apoptotic pathway and Wnt-signaling path-
way [160].

USP15 expression is upregulated in MM patients com-
pared with normal health ones. USP15 silencing induces
MM cell proliferation inhibition and apoptosis via inhi-
biting NF-kB pathway. In turn, NF-kB p65 can thus pro-
mote USP15 expression, which forms a positive feedback
loop [161].

UCHLL1 is highly expressed in many MM cases and
acts as a poor prognostic factor [162, 163]. UCHLI1 im-
pairs mTORC1 activity and increases mTORC2-
mediated phosphorylation of the proliferative kinase
Akt, and thus promotes the survival of MM cell [164].

PMSD14/Rpnll is a component of the 26S prote-
asome, a multi-protein complex that catalyzes the deg-
radation of ubiquitinated intracellular proteins [165].
Inhibition of PMSD14 activates the caspase cascade and
endoplasmic stress response signals to trigger MM cell
apoptosis and overcome bortezomib resistance [166].

Aberrant activation of the NF-«B pathway has been
observed in MM [167], while CYLD is a negative regula-
tor of NF-kB pathway, and the status of CYLD at 16q12
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is highly correlated with the clinical outcome of MM pa-
tients [168]. In addition to affecting NF-kB signaling,
CYLD loss or low expression also sensitizes MM cells to
Wnt ligands, indicating another possible tumor-
suppressive mechanism of CYLD in MM [169]. More-
over, it’s worth noting that the inhibitory effects of pro-
teasome inhibitors on NF-kB signaling, which could be
observed during MM treatment, might be mediated, at
least in part, by the cellular accumulation of CYLD
[170].

A20, a suppressor of the NF-kB pathway, is frequently
down-regulated in MM, as a result of gene copy number
reduction [171]. Berbamine treatment results in an in-
creased expression of A20, which inhibits the prolifera-
tion of MM cells [172].

Taken together, deubiquitinase inhibitors have been
shown to be effective in overcoming bortezomib resist-
ance, so the combination of deubiquitinase inhibitors
with existing therapies will become a new therapeutic
strategy.

DUBs in Hodgkin lymphoma

Hodgkin Lymphoma (HL) is a type of lymphoid malig-
nancy derived from B cells of the germinal center or
postgerminal center, which is characterized by a low
number of malignant cells and a high number of im-
mune effector cells in the tumor microenvironment
[173]. Primary HL can be cured with radiation therapy
and multiagent chemotherapy, and even recurrent or re-
fractory HL can be effectively treated or cured with
high-dose chemotherapy and autologous hematopoietic
stem cell transplantation. In addition, immunotherapy
with antibody-drug conjugates and immune checkpoint
inhibitors have been shown to be effective against HL
[174]. Due to the satisfying therapeutic effects of current
therapies against HL, there are few studies on deubiqui-
tination enzyme in HL.

Classical Hodgkin lymphoma (cHL), a subtype of HL
accounting for 95% cases, is characterized by the pres-
ence of less than 1% malignant mononucleated Hodgkin
and multinucleated Reed-Sternberg cells (HRS cells)
mixed with nonneoplastic cells [175]. NF-kB signaling
pathway, which is regulated by A20 and CYLD, is very
important for the survival and proliferation of HRS cells
[176]. Mutation or deletion of A20 gene exists in nearly
40% of HL cases, contributing to constitutive NF-kB ac-
tivity in cHL cells, while A20 reconstitution confers
cytotoxicity to A20-deficient cHL cells [177-179]. Dele-
tion or DNA copy number loss of CYLD are detected in
one of four commonly used cHL cell lines and biallelic
gene mutations of CYLD are detected at low frequency
[180, 181], suggesting that impaired CYLD function may
contribute to some cHL cases.
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DUBs in non-Hodgkin lymphoma

Non-Hodgkin Lymphoma (NHL) accounts for about
90% of all lymphomas, which can be subdivided into B-
cell lymphomas and T-cell/ NK-cell lymphomas. The
classification of NHL is complex and constantly evolv-
ing, with more than 80 different subtypes listed in the
latest classification of the World Health Organization
[182, 183]. Each type of NHL has its unique histological
and biological characteristics, as well as different treat-
ment strategies and clinical results, making NHL a com-
plex disease [184]. From the perspective of treatment,
NHL is divided into high grade and low grade lymph-
oma. Low grade NHL patients can be cured by surgical
excision or radiotherapy, but most patients appear in ad-
vanced stages or transform to high grade disease [185].
For high grade NHL patients, chemotherapy is still the
main treatment method, and some patients will also re-
ceive radiotherapy. For B cell-derived lymphomas, CD20
monoclonal antibody immunotherapy will also be used
in combination [186, 187]. However, drug resistance and
relapse during or after chemotherapy are major prob-
lems need to be solved, especially for T-cell/ NK-cell
lymphomas. The DUBs related to NHL are shown in
Fig. 6.

USP2 inhibition by ML364 induces an increase in cel-
lular cyclin D1 degradation and causes cell cycle arrest
in mantle cell lymphoma (MCL) cell line (Mino cell)
[188]. In addition, USP2 stabilizes Mdm2, which antago-
nizes the pro-apoptotic activity of p53 and possibly
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contributes to therapeutic resistance in cutaneous T-cell
lymphoma (CTCL) [189].

USP9X was found to be highly expressed in samples
obtained from patients with aggressive B-cell lymphoma.
Knockdown of USP9X leads to suppressed lymphoma
growth and increased sensitivity to chemotherapy by de-
stabilizing X-linked inhibitor of apoptosis protein (XIAP)
in B-cell lymphoma, independently of Mcl-1 [190]. In
diffuse large B cell lymphoma (DLBCL) and follicular
lymphoma (FL), USP9X deubiquitinates Mcl-1 and pro-
tects it from degrading, while high-level Mcl-1 is associ-
ated with malignant B-cell proliferation and poor
outcomes in B-cell lymphoma patients [154].

USP14 and UCHL5 are aberrantly expressed in the
cytoplasm of DLBCL cells [191]. USP14 and UCHLS5 in-
hibition by b-AP15 could induce cell apoptosis and sup-
press cell migration in both ABC- and GBC-subtypes of
DLBCL [192]. In addition, USP14 inhibitor IU1 leads to
tumor regression in malignant lymphomas of thymus
(MLT) mouse model [193].

USP21 is overexpressed in DLBCL and promotes cell
proliferation by maintaining the stability of enhancer of
zeste homolog2 (EZH2), an oncogenic molecule in NHL
[194, 195]. Targeted inhibition of USP21 activity resulted
in a reduction in EZH2 and thus inhibited cell growth,
independent of EZH2 mutations. Another DUB targeting
EZH2, USP36, was found in nasal natural killer /T cell
lymphoma (NKTL). USP36 stabilizes EZH2 by removing
the K222-linked poly-ubiquitin chain from EZH2 [196].

ABC-DLBCL
Non-GCB-DLBCL
T-cell lymphoma
MALT NF-xB pathway :
DLBCL . ’_[ Cyclin D1 MCL — Oncoprotein
MCL & Mdm2 CTCL == Suppressor
FL N
NKTL | & USP2
NS CYLD {XIAP B-cell lymphoma
~
& A20 USP9X" L Mcl-1 DLBCL and FL
ALCL CRLs activity}
CSN5S
DLBCL HSP90 pathway NHL e
19S proteasome
BL Akt pathway UCHLS R —
} LA DLBCL MLT
DLBCL mTOR pathway
USP34 LEE21
’ USP36 EZH2
| EZH2 !
NKTL
Fig. 6 DUBs in non-hodgkin lymphoma. The red arrows represent oncogenes and the green arrows represent tumor suppressors in NHL. The
surrounding text describes the substrates or signaling pathways involved in DUBs of different types of lymphoma. CRLs: cullin-RING E3
ubiquitin ligases
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USP34 expression is significantly higher in DLBCL
than that in reactive lymphatic hyperplasia. USP34 over-
expression is associated with age, germinal center B-cell-
like (GCB) subtypes, multiple extranodal involvements,
and higher International Prognostic Index (IPI) scores in
DLBCL [197]. Also, USP34 gene amplification was de-
tected in transformed DLBCL (tDLBCL) [198].

UCHL1 was detected to be highly expressed in both
Burkitt’s lymphoma (BL) and DLBCL, which is corre-
lated with a poor clinical outcome [199]. Knockdown of
UCHL1 using specific shRNA in BL cells leads to re-
duced cell proliferation, as well as strong LFA-1-
dependent homotypic adhesion [200]. Mechanistically,
aberrantly expressed UCHL1 could activate the Akt
pathway via down-regulating the antagonistic phosphat-
ase PHLPP1 and Akt signaling [201], as well as promot-
ing mTORC2 assembly [202]. At the same time, UCHL1
can bypass mTORCI to promote the assembly of elF4F,
a translational regulator downstream to Akt and mTOR,
which is required for MYC-driven B-cell malignancy in
mice [202].

CSN5 is identified the protease as a positive regulator
of oncogenes and negative regulator of tumor suppres-
sors [203—205]. CSN5i-3, a CSN5 inhibitor, inhibits the
growth of human-derived cell line SU-DHL-1 (anaplastic
large-cell lymphoma, ALCL) in a xenograft model [206].
Also, CSN5 knockdown inhibits the growth of DLBCL
cells partially through the CSN5-HSP90 pathway [207].

A20 mutations and/or deletions are linked with vari-
ous subtypes of B-cell or T-cell lymphomas, including
mucosal-associated lymphoid tissue (MALT) lymphoma,
DLBCL, MCL, FL and NKTL [208-210]. In NKTL,
monoallelic deletion of A20 occurs in 18% cases, while
no biallelic deletion was detected [175]. A20 mutations
occur in more than 50% of ABC-DLBCL and a small
fraction of GCB-DLBCL [211]. Up-regulating A20 with
phorbol myristate acetate (PMA) and lonomycin (IONO)
could effectively induce cell cycle arrest at GO/G1 phase,
suppress cell proliferation and induce apoptosis in OCI-
LY1, a DLBCL cell line [212]. Re-expression of A20 in
DLBCL cell lines carrying biallelic inactivation of the A20
gene leads to cell apoptosis and impairs NF-kB signaling
[211]. After A20 knockdown, NF-«B signaling in T cells
can be activated by CD3 alone, rather than CD3/CD28
co-stimulation [213]. However, A20 deficiency is not a
prognostic factor in all of our NKTL cohorts. It is associ-
ated with shorter PFS in the high IPI subgroup [175].

The cleavage of CYLD by MALT1 is blocked by the
selective inhibitor of MALT, which inhibits the growth of
ABC-DLBCL cells both in vitro and in vivo [214]. CYLD
anomalies are also detected in adult T-cell leukemia/lymph-
oma (ATLL) cells, as hyper-phosphorylated CYLD losses its
function of removing the ubiquitin chains on RIP1, leading
to continuous activation of the NF-kB pathway [215].
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Furthermore, CYLD phosphorylation down-regulation by
BTK inhibitors induces cell apoptosis and tumor growth in-
hibition in non-GCB-DLBCL, especially in the rituximab-
resistant relapsed/refractory cases [216].

Taken together, there are many types of NHL, and
some deubiquitinases have shown great significance in
certain types of NHL. However, the pathogenesis role of
deubiquitinases in NHL and relative combination ther-
apy need further investigation.

DUB inhibitors in hematological malignancies

Unlike E3 ligases, most of DUBs can be drugged accord-
ing to their cysteine proteases or metalo proteases [12,
217]. To date, several DUBs, particularly those in the
USP family, have been successfully targeted as small
molecule inhibitors showing cytotoxic effects in vitro
and in vivo. In addition to their potential therapeutic im-
plications, the use of inhibitors has contributed greatly
to understanding the role DUBs plays in various pro-
cesses. In Table 1, we list the inhibitors of DUBs that
have been reported so far and whether they are used in
hematological malignancies.

Although DUBs are promising drug targets for the
treatment of hematological malignancies, the develop-
ment of DUB specific inhibitors has not been an easy
task. This is because: 1) DUBs show complex structural
characteristics in their catalytic domain and similarities
among family members, which makes it difficult to tar-
get; 2) Some DUBs have high molecular weight, which
leads to difficulties in crystal formation and obtaining
complete crystal structure; 3) DUBs may undergo con-
formational changes after ubiquitin binding, suggesting
the flexibility of their active sites, which poses challenges
to the prediction and computer simulation of small mol-
ecules and leads to inefficiency; 4) The mechanism of
DUBs regulation is complex, involving allosteric regula-
tion of catalytic activity and/or substrate-mediated
catalysis.

Conclusions and perspectives

In this review, we have shown that DUBs are attractive
drug targets in hematological malignancies, and some
DUB inhibitors have shown favorable anti-hematologic
effects both in vitro and in vivo. However, some DUBs,
such as USP9X and USP22, display both oncogenic and
tumor suppressor properties in hematological malignan-
cies. To further clarify the role of DUBs in hematological
malignancies, more studies should be focused on the lo-
cation and substrate specificity of DUBs, as well as their
interaction with other oncoproteins. Moreover, further
analysis of the ubiquitin chain cleavage mode, the chain
linkage specificity of DUBs, and the ubiquitin chain
architecture on substrate proteins will help to under-
stand the different biological functions of DUBs. In
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Table 1 DUB inhibitors in hematological malignancies

Compound Structure DUBs target Year reported Hematological malignancies and
and reference reference
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Compound Structure DUBs target Year reported Hematological malignancies and
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Table 1 DUB inhibitors in hematological malignancies (Continued)

Compound Structure DUBs target Year reported Hematological malignancies and
and reference reference
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addition, understanding the role of DUBs in
hematopoietic stem cells (HSCs) maintenance and dif-
ferentiation would also contribute to elucidation of the
pathogenesis of hematological malignancies.

DUBs are involved in a variety of cellular life activities,
including DNA methylation, DNA damage repair, sur-
vival, differentiation, and apoptosis. This functional di-
versity indicates: 1) DUBs inhibition may overcome drug
resistance and relapse, which are the major problems in
the clinical treatment of hematological malignancies; 2)
Targeted inhibition of some DUBs can eliminate
leukemia stem cells and minimal residual disease; 3)
Therapeutic DUB inhibitors can be used in combination
with other anticancer therapies.

To improve the specificity of DUB inhibitors, allosteric
inhibitors might be an attractive alternative, or by blocking
the interactions between DUBs and specific substrate.

Overall, advances in the field of deubiquitinases further
pave the way for targeted therapies, and we believe that
the development of DUB inhibitors could bring clinical
benefits to patients with hematological malignancies.
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