Viet et al. Biomarker Research (2021) 9:42

https://doi.org/10.1186/540364-021-00292-x B | oma rke r Resea rCh

RESEARCH Open Access

Check for
updates

The REASON score: an epigenetic and
clinicopathologic score to predict risk of
poor survival in patients with early stage
oral squamous cell carcinoma

Chi T. Viet"'®, Gary Yu?, Kesava Asam**, Carissa M. Thomas®, Angela J. Yoon®, Yan Chen Wongworawat,
Mina Haghighiabyaneh’, Courtney A. Kilkuts', Caitlyn M. McGue', Marcus A. Couey®®, Nicholas F. Callahan'®,
Coleen Doan', Paul C. Walker'', Khanh Nguyen'', Stephanie C. Kidd'", Steve C. Lee'', Anupama Grandhi',
Allen C. Cheng®®, Ashish A. Patel®®, Elizabeth Philipone® Olivia L. Ricks'?, Clint T. Allen'® and

Bradley E. Aouizerat®**

Abstract

Background: Oral squamous cell carcinoma (OSCC) is a capricious cancer with poor survival rates, even for early-
stage patients. There is a pressing need to develop more precise risk assessment methods to appropriately tailor
clinical treatment. Genome-wide association studies have not produced a viable biomarker. However, these studies
are limited by using heterogeneous cohorts, not focusing on methylation although OSCC is a heavily
epigenetically-regulated cancer, and not combining molecular data with clinicopathologic data for risk prediction.
In this study we focused on early-stage (I/Il) OSCC and created a risk score called the REASON score, which
combines clinicopathologic characteristics with a 12-gene methylation signature, to predict the risk of 5-year
mortality.

Methods: We combined data from an internal cohort (n=515) and The Cancer Genome Atlas (TCGA) cohort (n =
58). We collected clinicopathologic data from both cohorts to derive the non-molecular portion of the REASON
score. We then analyzed the TCGA cohort DNA methylation data to derive the molecular portion of the risk score.
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Results: 5-year disease specific survival was 63% for the internal cohort and 86% for the TCGA cohort. The
clinicopathologic features with the highest predictive ability among the two the cohorts were age, race, sex,
tobacco use, alcohol use, histologic grade, stage, perineural invasion (PNI), lymphovascular invasion (LVI), and
margin status. This panel of 10 non-molecular features predicted 5-year mortality risk with a concordance (c)-

index = 0.67. Our molecular panel consisted of a 12-gene methylation signature (i.e, HORMAD2, MYLK, GPR133, SOX8,
TRPA1, ABCA2, HGFAC, MCPH1, WDR86, CACNATH, RNF216, CCNJL), which had the most significant differential
methylation between patients who survived vs. died by 5 years. All 12 genes have already been linked to survival in
other cancers. Of the genes, only SOX8 was previously associated with OSCC; our study was the first to link the
remaining 11 genes to OSCC survival. The combined molecular and non-molecular panel formed the REASON
score, which predicted risk of death with a c-index=0.915.

Conclusions: The REASON score is a promising biomarker to predict risk of mortality in early-stage OSCC patients.
Validation of the REASON score in a larger independent cohort is warranted.

Introduction

Oral cancer is on the rise [1-3]. Each year 30,000 Ameri-
cans are diagnosed with oral cavity squamous cell carcin-
oma (OSCC) and 80% of newly diagnosed cases are early
stage I/II without regional lymph node involvement or
distant metastasis. Even for early stage oral cancer pa-
tients, the five-year survival rate is as low as 60% [4—6].
The mortality rate is worse in racially and socioeconomi-
cally disadvantaged groups. A study using the Surveillance,
Epidemiology, and End Results (SEER) database indicates
that while black patients only make up 7.6% of all OSCC
patients, with 75% of patients being white, black patients
are significantly more likely to die of OSCC, which is par-
tially a result of a later stage at diagnosis and access to
healthcare or health coverage [6]. OSCC patients are
treated with surgical resection of the cancer and neck
lymphadenectomy, followed by adjuvant radiation with or
without chemotherapy and immunotherapy based on risk
stratification. However, with our current clinical practices
of relying solely on clinicopathologic information, risk
prediction, and therefore survival, remain poor. This poor
survival rate is in contrast to other cancers, or even other
head and neck cancer subtypes, such as oropharyngeal
SCC, which has seen significantly improved survival, due
to accurate risk stratification [7]. There is a need to de-
velop a robust prognostic biomarker that combines both
clinicopathologic data with molecular signatures to stratify
OSCC patients into high and low risk categories, which
will guide clinical decision making about adjuvant chemo-
therapy and radiation, and ultimately improve survival.
OSCC is a heavily epigenetically-regulated cancer, with
methylation being the most common epigenetic change;
methylation leads to genomic instability and dysregulation
of critical genes that enable OSCC progression [8]. Methy-
lation is one of the most frequent events occurring early
in oral carcinogenesis that is linked to cancer progression
[8]. While several methylation studies in OSCC patients
[8—18], including our own studies [9, 10], have highlighted
specific genes controlled by methylation, none of these

studies have produced a methylation biomarker with clin-
ically meaningful prognostic ability. The main shortcom-
ings in OSCC biomarker studies to date include: 1)
combining OSCC with other head and neck cancer sub-
sites (i.e, oropharynyx), which creates a heterogeneous co-
hort, and 2) relying solely on the molecular data, without
taking into account the clinicopathologic factors. In con-
trast, commercialized biomarkers for other cancers com-
bine both molecular and non-molecular data to determine
risk in a focused cancer subtype [19, 20]. Our current bio-
marker study directly addresses these shortcomings.

In this study we hypothesized that gene methylation
could be combined with clinicopathologic factors to form
a composite molecular and non-molecular signature with
high prognostic performance in determining risk of 5-year
mortality in early stage (I/II) OSCC patients. To test our
hypothesis and develop our composite molecular and
non-molecular risk score, we analyzed clinicopathologic
data of an internal retrospective cohort of 515 OSCC pa-
tients as well as a cohort of 58 patients from The Cancer
Genome Atlas (TCGA). We determined the top clinico-
pathologic factors that were highly predictive of 5-year
disease-specific mortality in these two cohorts. We then
analyzed available methylation array data in the TCGA co-
hort and discovered 12 genes that were differentially
methylated between the OSCC patients who died by 5
years and those who survived. We combined the clinico-
pathologic factors with the 12-gene methylation signature
into a risk score, which we named the high-Risk Epigen-
etic And clinicopathologic Score for Oral caNcer (REA-
SON) score. We determined its predictive performance to
identify early-stage OSCC patients who died from their
disease within 5 years of diagnosis.

Methods

Patient selection and data collection

The patients in this study were selected from an existing
OSCC database compiled at the institution at which they
were treated. Collection of clinical data for this database



Viet et al. Biomarker Research (2021) 9:42

was approved by the Institutional Review Board at each
institution, which included Loma Linda University
(LLU), and Columbia University Irving Medical Center
(CUIMC), Portland Providence Medical Center (PPMC),
University of Illinois Chicago (UIC), and University of
Alabama at Birmingham (UAB). The search was limited
to only oral cavity sub-sites, including oral tongue, max-
illary and mandibular gingiva, hard palate, floor of
mouth, buccal mucosa, and lip mucosa. Clinical and
pathologic stages were recorded based on the American
Joint Committee on Cancer (AJCC) Eighth Edition Sta-
ging Manual [21]. All patients had stage I or II (ie,
TINOMO or T2NOMO) biopsy-confirmed OSCC. De-
identified patient clinicopathologic characteristics were
used in the data interpretation. We collected the follow-
ing information from the chart review: age, sex, race,
smoking and alcohol use, staging, tumor location, patho-
logic characteristics [i.e., perineural invasion (PNI), lym-
phovascular invasion (LVI), margin status, histologic
grade], and treatment modalities received in addition to
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tumor ablation (i.e, neck lymphadenectomy, radiation
therapy with or without chemotherapy).

TCGA lllumina methylation array analysis

We performed an analysis of methylation data from
early-stage OSCC patients in the TCGA database. DNA
methylation data pre-processing, quality control filtering,
and quantile normalization [22] (inclusive of batch cor-
rection and surrogate variable analysis) were conducted
employing the minfi package v1.34.0 in R [23]. Differen-
tial methylation analysis was performed using the limma
package v3.44.3 in R [24]. The [llumina Infinium Methy-
lation 450K Array data analyses are outlined in the
workflow in Fig. 1. Briefly, out of a total of 485,512
probes, probes that hybridized to the X or Y chromo-
somes were removed, leaving 473,864 probes. An add-
itional 17,351 probes related to single nucleotide
polymorphisms (SNPs) and 111,977 probes that did not
map to gene regions were removed. From the remaining
344,536 probes, we retained those that had a detection p
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value of <0.01 in at least 50% of the samples. We then
filtered for probes that were cross reactive or mapped to
multiple genomic positions, leaving 324,465 probes.

We excluded probes with a beta value of < 0.1 across
all samples or > 0.9 across all samples, leaving 317,016
probes. Using the patient’s survival status as the out-
come variable we performed batch correction using sur-
rogate variable analysis. Surrogate variables with a
correlation of higher than 0.2 with survival status were
excluded (3 of 14 surrogate variables identified). We
then selected the top 30% most variable methylated
probes, which gave us a total number of 95,104 probes
spanning 4544 genes retained for differential methyla-
tion analysis. Given the exploratory nature of this pilot
study and the modest sample size available for analysis
(n = 58), differentially methylated CpG for survival status
showing an adjusted p-value of < 0.1 were considered for
inclusion in the molecular component of the prognostic
panel. Heat maps were constructed using hierarchical
clustering analysis using the heatmap package v1.0.12 in
R employing survival status as the clustering variable. To
evaluate for enrichment of differentially methylated
genes among pathways, pathway analysis was conducting
using two complementary and overlapping annotations:
gene ontology (GO [25]) and Kyoto Encyclopedia of
Genes and Genomes (KEGG [26]). Pathway analysis,
specifically overrepresentation analysis, was pursued
using KEGG and GO annotations was performed using
clusterProfiler v3.16.1 in R [27], with non-significant dif-
ferentially expressed genes specified as the “background
universe” and accounting for multiple testing using Bon-
ferroni correction. For overrepresentation analysis
employing GO annotations, pathways were categorized
further into biological process, molecular function, and
cellular compartment. Differentially methylated path-
ways were evaluated in relation to each other and con-
tributing  differentially methylated sites by two
visualizations of functional enrichment (i.e., dot plot and
gene-concept networks) using the enrichplot package
v1.8.1 in R.

TCGA Illumina RNA sequencing analysis

We sought to correlate the expression of genes that har-
bored differentially methylated sites associated with sur-
vival status. We performed an analysis of gene
expression collected by RNA sequencing (RNAseq) from
early-stage OSCC patients in the TCGA database. Raw
gene counts were obtained from TCGA. Only genes with
at least 10 counts in at least 90% of the sample were
retained for analysis. The Ensembl identifiers (ID) of the
gene counts were annotated to Entrez IDs using the
EnrichmentBrowser v 2.18.2 Package in R [28]. Annota-
tions for the genes was given using the Homo.sapiens
v.1.3.1 package [29]. Correlation of RNAseq gene counts
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to CpG site methylation was performed using STATA/
SE 14.2 (StataCorp, College Station, TX).

Statistical analyses

Statistical analyses were performed in STATA/SE 14.2. For
each cohort, univariate analyses were performed to determine
distributional characteristics and assess for randomness of the
missing data (variables to be included in the final prognostic
panel risk factor score had less than 5% missing values so im-
putation was not performed). Bivariate analyses with the pri-
mary outcome (vital status [survival vs. death] at 5-year
follow-up) were performed on candidate variables (based on
selection of the investigators from a detailed screening of rele-
vant clinical and demographic risk factors) with the outcome
variable. For continuous variables, cut-offs were derived using
the chi-square interaction detected by manual adjustment to
ensure that cut-offs made sense clinically. Recursive partition-
ing was used to derive a final non-molecular scoring system
to predict survival status at 5-year follow-up with the goal of
minimizing the number of misclassified values in the final cell
while maximizing the simplicity of the score. Odds ratios at
each decision node were rounded to the nearest integer to
create the score. Operating characteristics of the derived risk
score were calculated on both the discovery (internal cohort,
n = 515) and validation (TCGA, # = 58) cohorts. The concord-
ance statistic (c-index), equivalent to the area under the re-
ceiver operating curve (AUROC), was used to assess model
discrimination and fit using the derived risk factor score to
predict OSCC patients at risk for early mortality and morbid-
ity [30]. The range of the c-index is from 0.5 (random con-
cordance) to 1 (perfect concordance).

The DNA methylation-based, molecular component of
the REASON score was performed according to a
methylation state transition matrix [31]. For each of the
CpG sites, a B-value of < 0.3 indicated an unmethylated
state, 0.33-0.75 a hemi-methylated state and>0.75 a
fully methylated state. A gene was considered to be
hypermethylated if the methylation level moved from a
less methylated state to a more methylated state. Con-
versely, a gene was considered hypomethylated if there
was a state change to a lower level. A change in methyla-
tion that did not have a state change was not considered
significant [31]. The REASON score was established by
combining for the presence or absence of each non-
molecular and molecular risk factor. The c-index was
derived as described above by comparing the observed
survival status at 5years with the predicted survival sta-
tus at 5 years using the individual REASON score.

Results

Patient cohort characteristics

Our internal cohort of 515 patients and TCGA cohort of
58 patients consisted of patients with early stage (I or II)
OSCC based on their pathologic TNM classification.
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Table 1 details their demographic and clinicopathologic
characteristics. The TCGA cohort was 60% male, 93%
white, and had a mean age of 64. The majority of pa-
tients (68%) were current or previous smokers and 61%
of patients used alcohol. Tumor sub-sites included the
oral tongue, alveolar ridge, buccal mucosa, or floor of
mouth; 57% of the TCGA cohort consisted of oral
tongue SCC, with the remainder distributed amongst
other sub-sites. With regard to pathologic staging, 31%
were stage I and 69% were stage II. In terms of tumor
grade, 19% had well-differentiated tumors, with the
remaining 81% either moderately or poorly differentiated
tumors. PNI was present in 35%, LVI in 6.9%, and posi-
tive or close margins in 21% of cases. Five-year survival
was 86%. The significant differences between the TCGA
cohort and internal cohort are listed in Table 1. Gender,
age, self-reported race, and tobacco use were not differ-
ent between the two cohorts. The internal cohort was
53% male, 93% white, had a mean age of 65, and had
50% current or previous smokers. The internal cohort
featured a greater proportion of patients who self-
reported Hispanic ethnicity (22% vs 3.6%, p=0.001).
The internal cohort had significantly fewer patients that
used alcohol (40% vs 61%, p = 0.002). There were signifi-
cant differences in tumor location; while the proportion
of patients with tongue SCC was the same in both co-
horts (57%), the internal cohort had a higher percentage
of alveolar (gingival) SCC than the TCGA cohort (17%
vs 5%, p <0.001). There were also differences in tumor
grade, with a higher percentage in the internal cohort
having well-differentiated tumors (40% vs 19%, p =
0.001). A lower percentage in the internal cohort had
PNI compared to the TCGA cohort (11% vs 35%, p <
0.001). Along the same lines, there were also signifi-
cantly more patients with a lower pathologic stage in the
internal cohort (64% vs 31%, p <0.001). Despite having
earlier-stage, more well-differentiated tumors with lower
PNI, the risk of death was significantly higher in the in-
ternal cohort (37% vs 14%, p = 0.001).

Non-molecular clinicopathologic risk factors

We calculated the c-index using different clinicopatho-
logic factors. The clinicopathologic features with the
highest predictive ability among the two cohorts were
age, race, sex, tobacco use, alcohol use, histologic grade,
stage, PNI, LVI and margin status. This panel of 10 non-
molecular features predicted 5-year mortality risk with a
c-index = 0.72 for the TCGA cohort, c-index =0.66 for
the internal cohort. Despite the reported differences in
clinicopathologic characteristics between the two groups,
there were no significant differences in prognostic per-
formance. The two groups combined had a c-index =
0.67 in predicting 5-year mortality. The low c-index is
consistent with previous clinical and biomarker studies
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[4], which have demonstrated that clinicopathologic fac-
tors alone could not sufficiently assess disease risk as de-
fined by a c-index of = 0.8. In our current clinical
practice, we rely solely on these clinicopathologic factors
for risk assessment and treatment decisions.

Methylation array analysis reveals differentially
methylated genes in early stage OSCC patients who did
not survive to five years

Of the 4544 genes harboring CpG sites meeting criteria
for analysis, 12 genes showed an adjusted p-value of <
0.1 (Table 2). They included ABCA2, CACNAIH,
CCNJL, GPR133, HGFAC, HORMAD?2, MCPHI1, MYLK,
RNF216, SOX8, TRPAI, and WDR86. Figure 2 illustrates
the methylation state for each of the 58 TCGA patient
samples of the 12 top differentially methylated genes
using a heat map. Patients who died by 5years from
their cancer are grouped on the left of the heat map,
with significant differences in methylation signatures
compared to patients who survived to 5 years.

Prognostic ability of the REASON score

The REASON score was calculated by combining the 10-
factor non-molecular panel with the 12-gene methylation
panel composed of 13 CpGs, in which methylation status
of each gene was determined using the methylation state
transition matrix. The REASON score predicted 5-year
disease-specific mortality with a c-index = 0.915.

Top twelve differentially methylated genes linked to
survival in other cancers

A literature search of each of the 12 genes revealed that
with the exception of SOX8, none of the genes had pre-
viously been linked to OSCC in either human or preclin-
ical studies. While many of the genes have not been
extensively investigated in preclinical studies to compre-
hensively map their downstream mechanisms, all 12
genes have at least one publication that links the gene to
poor survival in cancer patients. In Table 2 each of the
genes is linked to the referenced clinical studies demon-
strating poor cancer survival. HORMAD?2 dysregulation
through either SNPs [32, 33] or hypermethylation [34] is
attributed to poor survival in non-small cell lung cancer
(NSCLC) and thyroid carcinoma. MYLK over-expression
is linked to poor survival in bladder carcinoma [35],
colorectal carcinoma [36], and hepatocellular carcinoma
[37]. GPR133 expression is inversely correlated with sur-
vival in patients with glioblastoma multiforme [38, 39].
The role of SOX8 has been already been investigated
using in vitro and in vivo models, as well as in clinical
samples of OSCC. In a clinical study, SOX8 is over-
expressed in chemoresistant patients with tongue SCC
and is associated with higher lymph node metastasis, ad-
vanced tumor stage and shorter overall survival [40].
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Table 1 Patient demographics and clinicopathologic characteristics. The table details the characteristics of the two cohorts.

Statistical tests and p-values are indicated

TCGA Internal cohort | Chi-square test
(n = 58) (n=515) (df) p-value
Tumor location
Alveolus, NOS 3 (5.17%) | 9 (1.75%)
Buccal mucosa 3 (5.17%) (23 (4.47%)
Floor of mouth 10 (17.24%) |65 (12.65%)
Hard palate 24 (4.67%)
Lip mucosa 2 (3.45%) |21 (4.09%) 77.51(8) <0.001
Mandibular alveolus 53 (10.31%)
Maxillary alveolus 26 (5.06%)
Oral cavity, NOS 7 (12.07%)
Tongue 33 (56.90%) 293 (57.00%)
Sex
Female 23 (39.66%) |241 (46.80%) 1.07 (1) 0.301
Male 35 (60.34%) 274 (53.20%)
Age t (df =571) = 055
Mean (SD) 64.01 (12.46) |65.20 (14.47) -0.60
Race
Asian 4 (714%) | 12 (2.60%)
Black 0 13 (2.81%) Fisher's exact test| 0.138
White 52 (92.86%) |428 (92.64%)
Other 0 9 (1.95%)
Ethnicity
Hispanic 2 (3.57%) | 89 (22.25%) 10.73 (1) 0.001
Non-Hispanic 54 (96.43%) |311 (77.75%)
Tobacco use
Never smoker 19 (33.93%) (186 (50.13%)
Previous smoker 25 (44.64%) |124 (33.42%) 512(2) 0.077
Current smoker 12 (21.43%) | 61 (16.44%)
Alcohol use
No 22 (38.60%) |227 (60.05%) 9.32 (1) 0.002
Yes 35 (61.40%) 151 (39.95%)
Survival at 5 years
Alive 50 (86.21%) |186 (63.05%) 11.73 (1) 0.001
Dead 8 (13.79%) (109 (36.95%)
Tumor grade
Moderate/poor 47 (81.03%) (297 (59.64%) 10.08 (1) 0.001
Well 11 (18.97%) |201 (40.36%)
Margin status
Negative 45 (78.95%) |342 (68.26%) 2.75(1) 0.097
Close (<bmm)/positive 12 (21.05%) [159 (31.74%)
Perineural invasion
No 28 (65.12%) |390 (88.64%) 18.61 (1) <0.001
Yes 15 (34.88%) | 50 (11.36%)
Lymphovascular invasion
No 40 (93.02%) (244 (82.71%) 297 (1) 0.085
Yes 3 (6.98%) | 51(17.29%)
AJCC pathologic stage
Stage | 18 (31.03%) |[330 (64.08%) 23.87 (1) < 0.001
Stage Il 40 (68.97%) (185 (35.92%)

Abbreviations: AJCC American Joint Committee on Cancer, NOS Not otherwise specified, SD Standard deviation, TCGA The Cancer Genome Atlas
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Table 2 Twelve-gene methylation signature. Gene position and methylation fold-change values are shown. The methylation trends
for each gene that are predictive of poor survival in our study are shown, in comparison to the gene expression trends that are
predictive of poor survival in previous studies. The PMID of the referenced study is included

12-GENE METHYLATION SIGNATURE IN HIGH VS. LOW RISK GROUPS THIS STUDY PREVIOUSLY PUBLISHED STUDIES
. . t- beta | methylation |expression .
gene array name chromosome | position |logFC | p value a‘;:{]y;t?: statistic| value ENGSEREEITEGa examined cancer type PMID
POOR SURVIVAL
- SNPs NSCLC 24797335
IHORMAD?2|cg24211826 22 30572326 | 1.236 | 1.27E-06| 0.072 | 5.45 4.60 t - SNPs NSCLC 21725308
3 o |thyroid carcinoma 30039914
1 expression cgllgﬁ%?r';a 28687357
MYLK |cg00465319 3 123339568 | 0.957 | 2.23E-06| 0.072 | 5.30 4.15 t 1 expression CRC 29565464
* expression HCC 30989713
1 expression GBM 27775701
GPR133 |cg24098252 12 131580577 | 1.350 | 2.56E-06| 0.072 | 5.26 4.03 t +
expression GBM 32642706
1t expression oscc 29071717
SOX8 |cg02170784 16 1034527 | 1.233 | 3.04E-06| 0.072 | 5.21 3.90 t ~ sndometrial
expression H 33190587
carcinoma
. nasopharyngeal
expression b 27390592
TRPA1 |cg27528660 8 72987924 | -1.324 |411E-06| 0.073 | -513 | 3.65 l 1 . e
expression carcinoma 26708603
1 expression EOC 26820484
ABCA2 |cg14280283 9 139903861 | 2.126 | 4.60E-06| 0.073 | 5.09 3.56 t T
expression ALL 24145140
methylation;
HGFAC |0902617981, 4 3449663, | 1.719 %gg-gg 0,083 i.gl gﬂ t : expression HCC 30635948
cg12337559 3449904 | 1.777 |7.89E- . . (1 exprossion foc 11454421
‘ expression b::ea?(s;itng"rjﬁ;al 20632086
MCPH1 |cg09035995 8 6323131 |-1.252 |7.74E-06| 0.083 | 495 | 3.13 l 3 :  varian
expression carcinoma 21505456
1 expression CRC 32406388
WDR86 |cg26438167 7 151087979 | 1.044 | 1.21E-05| 0.093 | 4.82 2.77 t 1
expression breast carcinoma | 32539762
CACNATH | cg16665866 16 1222626 | 1.056 |1.23E-05| 0.093 | 4.82 | 276 t 1 expression gastric, g, | 58846697
1 expression CRC 27203674
RNF216 |cg08180025 7 5682666 | 0.823 | 1.26E-05| 0.093 | 4.81 274 t 3 : ovarian
expression carcinoma 28927060
CCNJL |cg19100169 5 159688203 | -1.062 | 1.28E-05| 0.093 | -4.81 2.73 l 1 expression HCC 33204664

ALL - acute lymphoblastic leukemia; CRC - colorectal carcinoma; EOC - epithelial ovarian carcinoma; GBM - glioblastoma multiforme; HCC - hepatocellular carcinoma; NSCLC -
non small cell lung carcinoma; OSCC - oral squamous cell carcinoma

ALL Acute lymphoblastic leukemia, CRC Colorectal carcinoma, EOC Epithelial ovarian carcinoma, GBM Glioblastoma multiforme, HCC Hepatocellular carcinoma,
NSCLC Non small cell lung carcinoma, OSCC Oral squamous cell carcinoma
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Fig. 2 Heat map and hierarchical clustering of differentially methylated genes demonstrate a distinct methylation signature in high-risk vs. low-
risk OSCC patients. The figure represents a heat map of the 12 top differentially methylated genes between patients who survived to 5 years vs.
those that died in the TCGA cohort. ABCA2 = ATP-binding cassette sub-family A member 2; CACNATH = calcium voltage-gated channel subunit
alphal H; CCNJL = cyclin J-like protein; GPR133 = adhesion G protein-coupled receptor D1; HGFAC = hepatocyte growth factor activator;
HORMAD2 = HORMA domain containing 2; MCPH1 = microcephalin 1; MYLK = myosin light chain kinase; RNF216 =ring finger protein 216;
SOX8 = SRY-box transcription factor 8; TRPA1 = transient receptor potential cation channel subfamily A member 1; WDR86 = WD repeat
domain 86
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Similarly, higher SOX8 expression is linked to a high tumor
histological grade, lymph node metastasis, and shorter overall
survival in patients with endometrial carcinoma [41]. TRPAI
expression in cancer is controversial, with gene over-
expression linked to poor survival in nasopharyngeal carcin-
oma [42] and gene under-expression linked to poor survival
in renal clear cell carcinoma [43]. However, a study using
International Cancer Genome Consortium data shows that
the TRP family of genes has varying expression across differ-
ent cancer types, and that some 7RP genes have stronger
prognostic ability than others [43]. ABCA2, which encodes
for a membrane-associated protein of the superfamily of
ATP-binding cassette transporters, is over-expressed in epi-
thelial ovarian carcinoma and acute lymphoblastic leukemia
patients with poor survival [44, 45]. HGFAC expression is
directly correlated to survival in breast ductal carcinoma and
ovarian carcinoma [46, 47]. WDRS86 expression is linked to
poor survival in colorectal carcinoma and breast carcinoma
[48, 49]. In a clinical study of solid tumors including gastric,
lung and ovarian cancer, expression of T-type calcium chan-
nel genes including CACNAIH is used as a prognostic signa-
ture for survival [50]. RNF216 expression is associated with
poor survival in colorectal cancer and ovarian carcinoma, al-
though whether over- or under-expression decreases survival
is unknown [51, 52]. CCNJL expression is inversely corre-
lated with survival in hepatocellular carcinoma [53]. Of note,
differential methylation of the 12 genes has not previously
been linked to poor survival in any type of cancer. With the
exception of HORMAD?2 and HGFAC, published studies on
these candidate genes have focused on differential gene ex-
pression rather than methylation.

Functional analysis of the differentially methylated genes
Gene expression data was available for 55 of the 58
TCGA OSCC patients with DNA methylation data. As is
becoming increasingly appreciated, gene hypermethyla-
tion can result in decreased or increased gene expression
[54], which was observed in the TCGA sample. Signifi-
cant correlation between gene expression and DNA
methylation at each gene was observed for 6 (ABCA2
[r=046, p=0.0005], GPRI33 [r=042, p=0.0015],
MCPHI1 [r=0.31, p=0.024], RNF216 [r=-038, p=
0.0045], TRPAI [r=-0.60, p < 0.0001], WDR86 [r=0.36,
p =0.0072]) of the 12 genes.

We performed gene network analysis through publicly
available databases to determine whether our 12 candi-
date genes were directly involved in established signaling
networks. Table 3 details the KEGG pathways that are
linked to the candidate genes; Supplemental Table 1 de-
tails the GO pathways that are linked to the candidate
genes aggregated by gene ontology category (i.e., bio-
logical process, cellular compartment, molecular func-
tion. Seven of the 12 differentially methylated genes (i.e.,
ABCA2, CACNAIH, MCPH1, MYLK, RNF216, SOXS,
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TRPAI) mapped to statistically significant differentially
methylated pathways. The complex associations between
differentially methylated genes mapped to multiple re-
lated differentially methylated pathways were visualized
using a geneset enrichment dotplot and a gene-concept
network plot (Fig. 3). CACNAIH and MYLK mapped to
5 of the 19 statistically differentially methylated path-
ways (Padjusted < 0.05; Table 3). The number of differen-
tially methylated genes (p <0.05) among the top ten
most differentially methylated pathways (pagjusted < 0.05)
are visualized in Fig. 3a. Two (CACNA1H, MYLK) of the
twelve differentially methylated genes included in the
REASON score map to the top 3 most differentially
methylated pathways: neuroactive ligand-receptor inter-
action, morphine addiction, and calcium signaling path-
ways (Fig. 3b).

Discussion

The REASON score has high accuracy in predicting poor
survival of early-stage OSCC

The REASON score that we have constructed in this
study relies on non-molecular clinicopathologic factors
that are already used in standard clinical practice to as-
sess risk, as well as a 12-gene methylation signature. Pre-
vious methylation studies in OSCC have not identified
any of these 12 genes as having prognostic power. With
the exception of SOXS8, the genes within the panel have
not previously been associated with OSCC. However,
while some of these genes have not been firmly estab-
lished as playing crucial roles in carcinogenesis, all 12
genes have already been linked to cancer survival in gen-
etic association studies on patient tissues [31, 32, 34—42,
45, 46, 48, 50-52]. We therefore believe that the REA-
SON score containing these 12 genes is a promising
prognostic tool warranting further validation. The results
from this pilot study set the stage for a large scale bio-
marker validation study in which we will characterize
the methylation signatures of our internal cohort, which
to our knowledge represents the largest cohort of early-
stage OSCC assembled to date. Any gene pathway in-
volved in carcinogenesis undergoes extensive in vitro
and in vivo investigations, but a direct link to poor sur-
vival in patients requires large clinical cohorts; therefore,
to have all 12 genes in the panel already linked to cancer
survival in other cancers, is both provocative and rare.

OSCC patients have poor survival despite rapid advances
in cancer treatment

Completion of the human genome project in 2001 ush-
ered in an era of personalized medicine. The hope was
that the genetic code would facilitate the development of
highly effective biomarker panels to determine risk in
cancer patients, and lead to the discovery of anti-cancer
drugs that directly target highly dysregulated pathways.
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Table 3 Functional network analysis (KEGG). Differentially methylated pathways (Pagjusted < 0.05) based on KEGG annotations are
shown. Pathways that include any of the 12 differentially methylated genes included in the prognostic panel are identified

ID Description PunabJusTED PBONFERRON] (-Value Top 12 Genes
hsa04020 |Calcium signaling pathway 3.43E-12| 1.12E-09| 5.27E-10{CACNA1H, MYLK
hsa04080 |Neuroactive ligand-receptor interaction 4.12E-12| 1.34E-09| 5.27E-10
hsa05032 |Morphine addiction 2.24E-10| 7.28E-08] 1.91E-08
hsa04360 |Axon guidance 1.48E-08| 4.809E-06| 8.01E-07
hsa04510 |Focal adhesion 1.57E-08| 5.09E-06| 8.01E-07|MYLK
hsa05033 |Nicotine addiction 8.67E-08| 2.819E-05| 3.698E-06
hsa04015 |Rap1 signaling pathway 2.77E-07| 9.009E-05| 1.013E-05
hsa04024 |cAMP signaling pathway 3.65E-07| 0.0001185| 1.166E-05
hsa04724 |Glutamatergic synapse 5.50E-07| 0.0001788| 1.564E-05
hsa05412 |Arrhythmogenic right ventricular cardiomyopathy | 4.518E-06| 0.0014683| 0.0001156
hsa04725 |Cholinergic synapse 7.459E-06| 0.0024243| 0.0001735
hsa04713 |Circadian entrainment 1.151E-05| 0.0037401| 0.000228|CACNA1H
hsa04810 |Regulation of actin cytoskeleton 1.159E-05| 0.0037655| 0.000228 MYLK
hsa05200 |Pathways in cancer 1.463E-05| 0.0047544| 0.0002673
hsa04151 |PI3K-Akt signaling pathway 2.039E-05| 0.0066282| 0.0003478
hsa04974 |Protein digestion and absorption 2.177E-05| 0.0070739| 0.000348
hsa04727 |GABAergic synapse 3.33E-05| 0.0108238| 0.0005011
hsa04925 |Aldosterone synthesis and secretion 4.05E-05| 0.0131628| 0.0005755|CACNA1H
hsa04014 |Ras signaling pathway 4.699E-05| 0.0152703| 0.0006325
Dotplot ORA KEGG genesets
- ligand-recept O
Calcium signaling pathway { [ ) Count
Rap1 signaling pathway | @ : j:
CAMP signaling pathway 1 ® @
Focal adhesion { @ L
Axon guidance 1 [8) pvalue
Glutamatergic synapse 1 <] 1e-06
Morphine addiction { [ ) :::
Arrhythmogenic right ventricular cardiomyopathy | ® 4806
Nicotine addiction1 @
‘ 0.02 0.04 0.06
GeneRatio
Gene-Concept Network ORA KEGG genesets
0 =
® «
Q-
@ -

CACNATH

Fig. 3 Functional network analysis mapping. Functional enrichment analysis identifies the aggregation of differentially methylated genes onto
pathways that aggregate to three concepts. a Dot plot of differentially enriched genes that map to the top ten most differentially perturbed
methylated pathways (Pagjusted < 0.05). b The top 3 most statistically differentially methylated pathways are identified by a circle in grey and the
fold change in differential methylation of component genes is rendered in color ranging from negative (green) to positive (red) fold change for
each gene. The size of each circle is based on the number of genes
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fold change
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Some cancers have seen significantly improved survival
as a result of personalized medicine. For example, com-
mercially available genomic tests predict the risk of re-
currence in breast cancer patients and are currently used
in clinical practice to guide treatment decisions. These
biomarker panels were developed from large DNA
microarray studies performed in the early 2000s [19, 55].
Currently the most heavily marketed multigene assays
include Oncotype DX, which is supported by level II evi-
dence and endorsed by the American Society of Clinical
Oncology [20], and Mammaprint, which is supported by
level III evidence. These and other advances in breast
cancer treatment fueled by in-depth genomic analyses
have resulted in a significant improvement in survival
over the past two decades, particularly in young women
with metastatic disease [56]. However, advances in mo-
lecular profiling techniques have not yet led to improved
outcomes or clinically useful biomarkers for risk stratifi-
cation for OSCC. In fact, worldwide OSCC incidence is
on the rise [1]. In an epidemiologic study of 22 cancer
registries worldwide, tongue cancer incidence has in-
creased in young women <45 years old without trad-
itional risk factors of tobacco or alcohol use. Despite
advances in technology, such as Intensity-Modulated Ra-
diation Therapy (IMRT) for the precise delivery of radi-
ation, improvement in OSCC survival over the past few
decades has been modest [3]. Targeted therapies such as
cetuximab have demonstrated improved in survival
when used with an intensive chemotherapy combination
for recurrent or metastatic head and neck SCC (HNSC
C), but have yet to show improved outcomes in the de-
finitive setting [57]. Immunotherapy has emerged as a
fourth treatment modality for many cancers, and there
are now two immune checkpoint inhibitors, nivolumab
and pembrolizumab, that are approved for use in HNSC
C. Unfortunately, immunotherapy is only effective in
12-20% of HNSCC and their use is currently limited to
the recurrent or metastatic setting. Furthermore, the
anti-cancer activity seems to require a pre-existing im-
mune infiltrate within the tumor microenvironment,
which unfortunately is insufficient or largely absent in
most OSCC [58, 59]. For these reasons OSCC patients
continue to have poor survival despite recent advances
in head and neck cancer treatment.

OSCC biomarker studies have attempted to predict risk of
neck metastasis, but have not generated a clinically
viable risk score

Head and neck cancer researchers have attempted to de-
velop a multigene risk score to better tailor treatment
for OSCC patients. Studies so far have used differential
gene expression, gene amplification and deletions,
methylation, and microRNA (miRNA) as potential bio-
markers. In contrast to our current study, which
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identifies high risk patients that might benefit from
treatment escalation, the majority of studies have largely
focused on preventing over-treatment by developing a
biomarker to predict risk of neck metastasis. 20% or
more of these patients have occult (i.e, non-detectable
by clinical exam or imaging) neck metastasis. Numerous
publications, including computational modeling studies
[60], retrospective studies [61], and one large prospective
clinical trial that compares early stage OSCC patients
who receive a prophylactic neck lymphadenectomy to
those managed with a watch-and-wait approach [62], all
demonstrate that the > 20% risk of occult metastasis por-
tends a poor survival in the absence of a prophylactic
neck lymphadenectomy. As a result, it is standard of
care for early stage OSCC patients to receive a prophy-
lactic neck lymphadenectomy, even if this practice in-
volves over-treatment for up to 80% of patients with
concomitant morbidity, including shoulder dysfunction,
nerve damage and lymphedema [63]. This clinical prac-
tice necessitates a need to develop a more nuanced ap-
proach of risk stratifying patients. However, to date no
molecular signature exists that predicts risk of neck me-
tastasis with high enough accuracy for use in a clinical
setting. Earlier biomarker studies performed in the early
2000s used custom-built in-house DNA microarray gene
expression profiling to discover differentially expressed
genes between patients with and without neck metasta-
sis. Roepman et al. from the Netherlands identified a
102-gene signature to predict neck metastasis [64, 65].
The signature was 77% accurate in predicting presence
of neck metastasis and 100% accurate in predicting lack
of neck metastasis, with an overall accuracy of 86%. The
authors proceeded to validate their signature 7 years
after the initial study, after switching their platform to a
commercially available microarray that was CLIA/ISO-
approvable. In the multi-center validation of 222 patients
comprised of OSCC and oropharyngeal SCC (OPSCC),
the authors determined that their gene expression signa-
ture had a negative predictive value (NPV) of 72% for all
stages of OSCC and OPSCC, which was increased to
89% in 101 early stage (I/I) OSCC patients alone [63].
In a clinical decision model that incorporated the gene
signature, the authors predicted that they would be able
to avoid over-treatment with a neck dissection in 32 of
the 101 early stage OSCC patients [63]. The improved
NPV when only considering early stage I/II OSCC pa-
tients alone underscores the importance of recognizing
that OSCC is a disease subset that is distinct from all
other head and neck cancer sub-sites.

Focusing instead on gene amplifications and deletions,
Albertson et al. used array comparative genomic
hybridization (CGH) [66] to identify dysregulated path-
ways in OSCC. Their group was the first to identify dys-
regulation of the Notch signaling pathway in OSCC.
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This finding was later validated in a study by Grandis
et al. that defined the mutational landscape of head and
neck cancer [67]. The group went on to define a bio-
marker of chromosomal aberrations that included
+3q24-qter, —8pter-p23.1, +8q12-q24.2, and + 20, which
distinguished a major subgroup (70-80% of OSCC pa-
tients, termed 3q8pq20 subtype) from the remainder
(20-30% of OSCC patients, non-3q8pq20). The non-
3q8pq20 biomarker had a high negative predictive value
(0.93-1.0), but low positive predictive value (0.46—0.77)
[68]. This biomarker has not yet been validated in a clin-
ical trial. Taken together, the biomarker trials to date fo-
cused on predicting the risk of neck metastasis have had
modest success. If a robust biomarker could be vali-
dated, it would be highly beneficial to surgeons and pa-
tients alike, as it will allow them to make an informed
decision on the need for an elective neck dissection,
while avoiding over-treatment.

There is a need for biomarkers to predict poor survival in
early stage OSCC

Rather than focusing on biomarkers to de-escalate neck
dissections, other investigators have taken a similar ap-
proach to our current study and focused instead on de-
veloping biomarkers of poor survival in OSCC patients,
with the intent of identifying high risk patients that
might benefit from treatment escalation. Chauhan et al.
developed a biomarker panel of 5 proteins qualitatively
assessed with immunohistochemistry to predict mortal-
ity in OSCC patients. The test and validation cohorts in-
cluded both early- and late-stage OSCC patients (stages
I-IV). Their validated biomarker panel had a c-index =
0.69 [69]. Yoon et al. developed a microRNA (miRNA)-
based scoring system that combined clinicopathologic
data with miRNA signatures. They focused only on
early-stage OSCC patients. The authors discovered and
validated this prognostic panel using 568 early stage (I/
II) OSCC patients with known 5-year survival outcome.
They examined multiple clinicopathologic factors, in-
cluding TNM classification, histologic grade, PNI, LVI,
depth of invasion, margin status, race, smoking and alco-
hol use, along with 2083 miRNAs.

Clinicopathologic data alone only predicted risk of
death at 5 years with an accuracy of c-index = 0.672 (p <
0.001). Their top 3 candidate miRNAs were miRNA-
127-3p, miRNA-655-3p, and miRNA-4736 (c-index =
0.810; p <0.001). Based on c-index calculations they de-
termined that a 5-plex panel consisting of TNM classifi-
cation, histologic grade, miRNA-127-3p, miRNA-655-3p,
and miRNA-4736 had the highest prognostic power in
predicting risk of death at 5 years, with a c-index = 0.832
(p <0.001) [4]. While our clinical cohort includes a pro-
portion of the cohort used by Yoon et al, analysis of our
entire cohort has vyielded different significant
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clinicopathologic factors, which we combined with our
methylation signature to produce the REASON score.
The REASON score developed in this study predicts
risk of death by 5years in early stage OSCC patients
with a c-index of 0.915. The risk score was developed by
leveraging both a large internal cohort with publicly
available TCGA data, focusing specifically on oral cavity
sub-sites to maximize the likelihood of discovering
meaningful biomarkers in a highly capricious disease.
Due to the modest sample size available for the initial
development of the molecular portion of the REASON
score (TCGA), cross-validation approaches (e.g., k-fold
or leave-one-out methods) would not be valid nor ap-
propriate as possible bias would be introduced due to
the generation of performance estimates on smaller sub-
sets of the current data set size [70]. An adequately large
data set will be required to permit testing, training and
validation approaches to be applied to the preliminary
REASON score. We are currently validating the REA-
SON score by performing methylation array analysis in
our entire internal cohort. Additionally, we are enrolling
OSCC patients in a prospective study that will validate
the REASON score using non-invasive brush biopsies.

Conclusions

In this study we used an internal cohort and publicly avail-
able cohort to derive salient clinicopathologic factors and
combined them with a 12-gene methylation signature to cre-
ate the composite molecular/non-molecular REASON score,
which had high prognostic performance in identifying early-
stage (I/II) OSCC patients with high risk of death in 5 years.
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