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Biomarkers for cancer-associated fibroblasts
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Abstract

Cancer-associated fibroblasts (CAFs) are the key component of tumor stromal. High heterogeneity of CAFs reflects
in their origin, phenotype and function. Biological function which can be suggested by biomarkers of distinct CAF
subgroups may be different, even opposite, just like water and fire. Identifying CAF subpopulations expressing
different biomarkers and reconciling the relationship of the “water and fire” among distinct CAF subsets may be a
breakthrough in tumor therapy. Herein, we briefly summarize the biomarkers commonly used or newly identified
for distinct CAFs in terms of their features and potential clinical benefits.

Keywords: Biomarker, Cancer-associated fibroblasts, Heterogeneity

As the most abundant and main component in the
tumor microenvironment (TME), cancer-associated fi-
broblasts (CAFs) are generally considered as all the fi-
broblasts found within and surrounding tumor tissues,
which are activated from normal resident tissue fibro-
blasts or transdifferentiated from non-fibroblastic lineage
such as epithelial cells and adipocytes due to the stimu-
lation of TME [1, 2]. CAFs were thought to be tumor-
promoting by building up and remodeling extracellular
matrix (ECM). However, latest study revealed the exten-
sive inter- and intra-organ heterogeneity of fibroblasts in
the physiological context [3], and several preclinical
studies attempted to target CAFs directly in mouse
models also failed [4, 5]. These evidences suggest an ob-
vious heterogeneity of CAFs which may harbor both
tumor-promoting and anti-tumor properties.
Traditional CAF biomarkers such as α-smooth muscle

actin (α-SMA), fibroblast activation protein (FAP), S100A4,

platelet-derived growth factor receptors (PDGFRα/β) or
vimentin have been well-studied despite none of them are
specific to CAFs (Table 1) [6]. Moreover, increasing CAF
subsets with distinct biomarkers expression and different cel-
lular functions have been identified recently. We here briefly
outline the biomarkers for identifying CAF heterogeneity
and potential therapeutic targets.

CAFs isolation and characterization
CAFs can be easily digested and cultured on plastic
flasks, whereas other types of cells not, which is the basis
of CAFs isolation [7]. Briefly, obtained tumor tissues are
minced into small pieces about 1 mm and then digested
at 37 °C with shaking. Usage of gentle tissue dissociators
may improve separation efficiency. For digestion, diverse
collagenases, trypsin, hyaluronidase and dispase can be
used alone or combined. The cells acquired are filtered
through cell strainers and then planted in culture plates.
Breast tumor tissues are usually incubated at room
temperature for 5 min without shocking after digestion.
Red blood cell lysis buffer is optional.
The primary CAFs should be negative for epithelial

(EpCAM), endothelial (CD31) and leukocyte (CD45)
with an elongated spindle-like morphology [1]. In prac-
tice, traditional CAF biomarkers are typically combined
with lineage exclusion to identify CAFs. Notably, the
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passage number of cultured CAFs between 1 to 6 is suit-
able for experiments.

Neutral biomarkers with dual functions
α-SMA: a snapshot of CAF heterogeneity
As the marker of activated fibroblasts, α-SMA, a cytoskel-
etal protein associated with TGF-β production and highly
contractile phenotype, is the first identified and most fre-
quent CAF biomarker [8, 9]. Studies have verified that α-
SMA+ CAFs could promote tumor progression, confer
therapeutic resistance and mediate immunosuppressive

TME in multiple ways, such as paracrine and ECM re-
modeling [2, 10, 11].
However, depleting α-SMA+ CAFs directly has been

failed to treat pancreatic ductal adenocarcinoma (PDAC)
in murine models, probably due to the immune surveil-
lance suppression [4]. Patients with high desmoplasia de-
fined by expression of collagen I and CAF markers
including α-SMA have better prognosis in PDAC, breast
and lung cancer patients [12, 13]. These results show
that the fibrotic response of α-SMA+ CAFs may be a
host protection mechanism against tumor progression,
which needs further investigation.

Table 1 List of commonly used biomarkers for CAFs

Marker Cell origin Biological effects Effects on tumors Clinical application

Neutral biomarkers with dual functions

α-SMA Normal fibroblasts,
quiescent stellate cells,
smooth muscle cells

Cell contractility,
structure and
integrity,
desmoplasia

Tumor proliferation,
immunosuppressive; protection
mechanism, impeding drug
delivery

Preclinical trials by targeting α-SMA directly failed;
prognostic indicator

S100A4 Normal fibroblasts,
epithelial cells,
endothelial cells

Cell motility, tissue
fibrosis

Promoting metastasis, immune
evasion; immune surveillance
and response

Unknown

Accomplices: pro-tumorigenesis biomarkers

FAP Normal fibroblasts,
quiescent stellate cells,
CD45+ immune cells

ECM remodeling,
fibrogenesis, serine
protease activity

Tumor progression and
metastasis, shaping the
immunosuppressive TME

Preclinical trials (antibody, inhibitor, DNA vaccination,
oncolytic adenovirus, CAR-T); phase II clinical trials
(PT-100, sibrotuzumab) failed; prognostic indicator

PDGFRα/
β

Normal fibroblasts,
vascular smooth
muscle cells, pericytes

Receptor tyrosine
kinase activity

Immunomodulation, M2
polarization, angiogenesis

Dasatinib normalizes CAFs; targeting Saa3 in PDGF
Rα+ CAFs; prognostic indicator

PDPN Endothelial cells Cell motility and
adhesion

Immunosuppressive Unknown

CD70 T and B lymphocytes,
mature dendritic cells

T cell function
regulation

Immunosuppressive, tumor cell
migration, T cell exhaustion

Prognostic indicator

Vimentin Epithelial cells,
endothelial cells

Cell motility,
structure and
integrity

Tumor invasion Unknown

GPR77 Polymorphonuclear
neutrophils

Complement
activation, pro-
inflammatory
signaling

Sustaining cancer stemness,
cancer formation,
chemoresistance

Neutralizing anti-GPR77 antibody abolishes tumor for-
mation in a PDX model

CD10 BMSCs, pre-B
lymphocytes

Metalloendoprotease Sustaining cancer stemness,
cancer formation,
chemoresistance

Unknown

CD74 Normal fibroblasts,
monocytes/
macrophages,
epithelial cells

MHC II chaperone,
protein trafficking

Immunomodulation Unknown

Defenders: tumor-suppressive biomarkers

CD146 Endothelial cells Cell adhesion Maintaining ER expression,
sensitive to tamoxifen

Prognostic indicator; Considered as a drug?

CAV1 Normal fibroblasts,
endothelial cells,
adipocytes

Structure
component, cell
signaling and
transport

CAV1low associated with poor
prognosis

Prognostic indicator

Saa3− Smooth muscle cells,
adipocytes

Collagenase
production

PDGFRα+Saa3− CAF impairing
tumor proliferation

Targeting Saa3 in PDGFRα+ CAF; prognostic indicator
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The contradictory conclusions above indicate the α-
SMA+ CAF heterogeneity which has been confirmed
in a recent study classifying different subtypes of α-
SMA+ CAFs. Typically, inflammatory CAFs (iCAFs)
being α-SMAlowIL-6high are identified in PDAC and
located more distantly from neoplastic cells than α-
SMAhighIL-6low myofibroblastic CAFs (myCAFs)
(Fig. 1a). ICAFs appear to be more tumor-promoting
than myCAFs by producing chemokines and cytokines
[14] and indicate a higher malignancy in pancreatic
tumorigenesis [15]. On the other hand, myCAFs may
deposit ECM extensively to impede drug delivery des-
pite less cancer-stimulating [16]. Considering the bio-
logical effects of myCAFs and iCAFs, the composition
of myCAFs and iCAFs in the TME may have different
implications for treatment. High iCAF content may
indicate a higher degree of malignancy, while high

myCAF content may indicate a poor response to
treatment.
Accordingly, combination of reducing the upstream

formation of iCAFs with inhibiting the downstream des-
moplasia derived from myCAFs may design the treat-
ment strategy. Furthermore, IL-1/JAK/STAT signaling
cascades and TGF-β have been found involved in the
formation and mutual transformation of these two CAF
subtypes. JAK inhibitors can suppress tumor growth as
well as shift iCAFs to myCAFs while TGFBR inhibition
could partially attenuate the function of myCAFs with-
out influencing tumor growth [16]. Patients might bene-
fit from combination therapy of these two drugs.
Altogether, classification of α-SMA+ CAFs deepens our
understanding of CAF heterogeneity as well as provides
new ideas for CAF targeted therapy which remains fur-
ther study.

Fig. 1 The “double face” of cancer-associated fibroblasts (CAFs). CAF subsets identified by different biomarkers play distinct roles in tumor
microenvironment. a, several studies have shown that CAFs expressing α-SMA or S100A4, which are considered tumorigenic previously, are also
potentially anti-tumor. Identification of myCAFs and iCAFs among α-SMA+ CAFs may represent an aspect of CAF heterogeneity, which is believed
that two subsets can convert into each other. b, most biomarkers represent tumor-promoting CAFs including traditional CAF biomarkers (FAP,
PDGFR, Vimentin, PDPN and CD70) as well as some newly identified markers (CD49e, CD10/GRP77 and MHCII/CD74). c, CD146+ CAFs, CAV1high

CAFs and PDGFRα+Saa3− have been identified as tumor-suppressive CAF subsets
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Bidirectional roles of S100A4
S100A4, also called fibroblast-specific protein-1, is usually
expressed on CAFs transited from epithelial or endothelial
cells [17, 18]. However, the biological effects of S100A4+

CAFs are controversial (Fig. 1a). S100A4+ CAFs promote
tumor metastasis through secretion of VEGF- A and
Tenascin-C [19]. Chemokine ligand 2 (CCL2) derived
from S100A4+ CAFs contributes to immune evasion by
maintaining macrophage infiltration [20]. On the other
hand, fibroblasts expressing S100A4 can product collagen
and encapsulate carcinogens to enhance immune surveil-
lance ability [21]. α-SMA+S100A4+ CAFs can activate
tumor immune response by promoting CD8+ T cell
activation through fusion with dendritic cells [20]. These
findings confirmed the CAF heterogeneity, and S100A4+

CAFs remain further characterization.

Accomplices: pro-tumorigenesis biomarkers
FAP: a promising therapeutic target
FAP is another wide-spread biomarker for CAFs, as well
as a serine protease participating in ECM remodeling
and fibrogenesis, thereby accelerating tumor progression
[22]. FAP+ CAFs can shape the immunosuppressive
TME by secreting distinct chemokines and cytokines [2].
A recent study in ovarian cancer found that FAPhigh

CAFs are correlated with poor patient outcomes [23].
So far, FAP might be one of the most promising thera-

peutic targets of CAFs. In distinct murine tumor models,
multiple strategies targeting FAP exhibited therapeutic
effects, including genetic deletion [24], pharmacological
inhibition (PT630, PT-100) [25, 26], a novel monoclonal
antibody (mAb) FAP5-DM1 [27], conditional ablation of
FAP+ CAFs using diphtheria toxin [28] or αFAP-PE38
[29], and even novel FAP-targeting immunotherapies
such as DNA vaccination [30], chimeric antigen receptor
(CAR) T cells [31, 32] or oncolytic adenovirus [33, 34].
However, sibrotuzumab, a FAP-specific antibody,

which has been found clinically safe and effective in a
phase I trial of advanced cancers, showed no beneficial
effect in a phase II trial of metastatic colorectal cancer
[35–37]. Another phase II trial utilizing PT-100 in meta-
static colorectal cancer also failed [38]. It is noted that
the patients involved in both of these phase II trials were
heavily pre-treated and represented a refractory patient
population, which may account for the failure. FAP may
probably contribute more in the earlier-stage tumors ra-
ther than late-stage metastasis [39]. Nevertheless, FAP is
still the most promising CAF therapeutic target and
more exploration is needed.

Other traditional biomarkers: PDGFR, Vimentin, PDPN and
CD70
PDGFRα/β are both upregulated in multiple tumors
[40], and PDGFRβ is correlated with poor survival in

breast cancer [41]. PDGFRα/β+ CAFs participate in
immunomodulation by inducing macrophage migration
and M2 polarization [2]. Blocking PDGFR signaling can
suppress angiogenesis and tumor growth in human cer-
vical cancer [42]. Furthermore, a PDGFR inhibitor,
Dasatinib can partially reverse the pro-tumorigenic
CAFs of lung adenocarcinoma (LUAD) to a quiescent
state [43], which might be a potential treatment strategy
for LUAD.
Vimentin is a biomarker for epithelial-to-mesenchymal

transition (EMT) maintaining structure and motility
during cell migration [44], involved in CAF motility to
lead cell invasion in LUAD [45]. Podoplanin (PDPN)+

CAFs in LUAD have been reported as the inducer of im-
munosuppressive microenvironment [46]. Moreover,
CAFs expressing CD70 enrich regulatory T cells to inva-
sive colorectal cancer and CD70 expression is negatively
correlated with survival of patients with colorectal can-
cer (Fig. 1b) [47]. PDPN seems to be a potential thera-
peutic target while CD70 and vimentin might be more
suitable for prognostic indicators and more evidences
are warranted.

Defenders: tumor-suppressive biomarkers
The potential anti-tumor function of CAFs exhibits
when we attempt to inhibit hedgehog pathway which
has been proved to activate fibroblasts [48–50], indicat-
ing the existence of tumor-suppressive CAF subsets.
Studies on CAF heterogeneity has identified several po-
tential anti-tumor CAF subpopulations and biomarkers
(Fig. 1c).
CD146 expression is found to distinguish at least two

CAF subpopulations in ER+ breast cancer, among which
CD146+ CAFs could promote tamoxifen sensitivity by
continuously expressing ER, whereas CD146− CAFs op-
posite [51]. Another stroma-derived gene expression sig-
nature of breast tumor shows that CAV1low CAFs are
correlated with poor prognosis [52]. Serum amyloid A3
(Saa3) is also identified as new biomarker of mouse
PDGFRα+ CAFs in PDAC, as PDGFRα+Saa3+ CAFs
could facilitate tumor growth while PDGFRα+Saa3−

CAFs impairing tumor proliferation [53]. In summary,
increasing proportion of CD146+ CAFs in ER+ breast
cancer and targeting Saa3 specifically in PDAC might be
promising strategies to revert the TME to an anti-tumor
environment. So far it might be too immaturely to use
the defensive CAFs as a cellular therapeutic strategy,
however at least these biomarkers might be benefit for
prognostic diagnosis.

Newly identified CAF subpopulations and
biomarkers
Recent advances using single-cell RNA sequencing
(scRNA-seq) provide us technical advantages to better
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understand CAF heterogeneity and identify novel bio-
markers. For example, CD49e has been identified as a
new cell surface pan-CAF biomarker in ovarian cancer
recently, just like α-SMA [23]. Herein, we list the CAF
subpopulations and biomarkers newly identified in dis-
tinct tumor tissues (Table 2).
GPR77 and CD10 are potential targeted biomarkers as

the infiltration of CD10+GPR77+ CAFs indicates chemo-
therapy resistance and poor survival, especially in the
ER−HER2− subtype and high-grade breast tumors. Block-
ing GPR77 substantially can suppress tumorigenesis
along with enhancing chemosensitivity in a patient-
derived xenograft model [54].
The existence of iCAFs and myCAFs has been verified

in triple-negative breast cancer (TNBC) and bladder
urothelial carcinoma by scRNA-seq, despite the bio-
markers identified are different. For specific, CX-
chemokine ligand 12 (CXCL12) is the biomarker of TNBC
iCAFs [55]. RGS5 and PDGFR are the biomarkers for
myCAFs and iCAFs in bladder tumor, respectively [56].
Major histocompatibility complex (MHC) class II fam-

ily genes and CD74 have been identified as biomarkers
of another PDAC CAF subpopulation termed as antigen
presenting CAFs (apCAFs) besides myCAFs and iCAFs.
ApCAFs process an immunomodulatory role by

interacting with CD4+ T cells [57]. All of these three
CAF subpopulations with another three are verified in
TNBC. It is noted that apCAFs are also found in normal
tissues, indicating that the phenotype is not TME-
induced. Furthermore, PDGFRα is found highly
expressed in iCAFs while PDGFRβ is found highly
expressed in myCAFs [58].
A recent scRNA-seq study conducted in human intra-

hepatic cholangiocarcinoma (ICC) found five CAF sub-
populations: vascular CAFs (vCAFs) defined by MCAM
expressing high level of IL-6, matrix CAFs (mCAFs) de-
fined by POSTN, iCAFs defined by FBLN1, apCAFs de-
fined by CD74 and EMT-like CAFs defined by KRT19
[59]. Another study identified three CAF subpopulations
with distinct biomarkers in breast cancer: vCAFs with
marker Nidogen-2, mCAFs with marker PDGFRα and
developmental CAFs with marker SCRG-1 [60]. More-
over, two CAF subpopulations are detected in colorectal
tumors: CAF-A expressing ECM remodeling genes such
as MMP2, DCN, COL1A2 and CAF-B expressing
markers of myofibroblasts such as α-SMA, TAGLN,
PDGFA [61]. PDPN, DCN and THY1 are another group
of biomarkers classifying four CAF subpopulations in
high-grade serous ovarian cancer (HGSOC). Immuno-
modulatory CAFs expressing highly IL-6/CXCL12

Table 2 List of CAF subpopulations and biomarkers newly identified

CAF subsets Biomarkers Tumor tissues Signatures/functions Refs

pan-CAF CD49e Ovarian cancer [23]

myCAF α-SMAhighIL-6low; RGS5 PDAC; TNBC; bladder
cancer

Myofibroblast-like; matrix deposition; [14, 56,
58]

iCAF α-SMAlowIL-6high; PDGFR; CXCL12;
Ly6c1high; FBLN1

PDAC; TNBC; bladder
cancer; ICC

Inflammatory infiltration; chemokines and cytokines
secretion; tumor-promoting

[14,
56–59]

apCAF MHC-II gene; CD74 PDAC; TNBC; ICC Antigen presenting; immunomodulation [57–59]

vCAF MCAM; IL-6 ICC Response to hypoxia; mesenchymal cell proliferation [59]

mCAF POSTN; COL5A1 ECM; collagen fibril organization

EMT-like CAF KRT19 Epithelium-like

vCAF Nidogen-2 Breast cancer Vascular development; angiogenesis [60]

mCAF Fibulin-1; PDGFRα ECM and EMT

developmental CAF SCRG1 Differentiation of cells; development and
morphogenesis of tissues

CAF-A MMP2; DCN; COL1A2 Colorectal cancer ECM remodeling [61]

CAF-B α-SMA; TAGCN; PDGFA Myofibroblast-like

CAF-cluster2 CDK1 TNBC Cell cycling [58]

CAF-cluster3 CD53 Structural integrity and function of muscle

CAF-cluster4 CRABP1 Basement membrane protease associated

Immunomodulatory
CAF

IL-6; IL-10; C1QA/B/C; CFB; CXCL1/
2/10/12

HGSOC Immunomodulation [62]

CAF-S1/S4 CD29; FAP; α-SMA; FSP1; PDGFRβ;
CAV1

Breast cancer; ovarian
cancer

Immunomodulation; myCAFs and iCAFs [63–66]

CAF-S2/S3 Not activated

CD10+GPR77+ CAFs CD10; GPR77 Breast and lung
cancer

Promoting cancer formation and chemoresistance [54]
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identified could activate JAK/STAT signaling in tumor
cells [62], just like iCAFs.
Mechta-Grigoriou et al. characterized four CAF sub-

sets in breast, ovarian cancers and metastatic lymph
node of breast cancer with distinct properties by analyz-
ing six fibroblast biomarkers (FAP, α-SMA, β1/CD29,
S100A4, PDGFRβ, and CAV1). The identified CAF-S1
subset can promote an immunosuppressive environment
and stimulate migration of cancer cells [63–65]. Further
investigation classified the CAF-S1 subset into 8 differ-
ent clusters by scRNA-seq, among which three clusters
belong to the iCAFs while another 5 clusters belong to
the myCAFs [66].
As we summarized above, increasing CAF subsets with

distinct biomarkers have been identified to coexist in
tumor tissues and play different biological functions.
However, due to the tissue heterogeneity, distinct classi-
fication criteria, biomarkers and nomenclature selected
by different laboratories, the identification of CAF sub-
sets is somewhat messy and intersecting at present.
Among the CAF subsets identified, myCAFs and iCAFs
both seem prevalent across-organ despite the biomarkers
identified are different, probably due to the tissue het-
erogeneity. Furthermore, iCAFs have been widely proved
to promote tumor progression by secreting chemokines
and cytokines such as IL-6 and CXCL12. On the other
hand, several CAF subgroups identified from different
tissues have been named the same by different studies,
such as vCAFs and mCAFs. However, given their differ-
ent biological functions and biomarkers, whether they
are the same subgroup is worth further discussion. We
believe that with the further research on the CAF het-
erogeneity, there will be a unified standard for the selec-
tion of CAF biomarkers and nomenclature of CAF
subpopulations.
With the further development of the technology, we

believe that our understanding of the CAF subsets and
biomarkers will be more profound. CAF biomarkers can
be utilized as both prognostic indicators and therapeutic
targets for clinical benefits. Hopefully, we can reverse
the accomplice CAFs to defender ones by targeting ap-
propriate molecules.
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