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Abstract

SETD2 is the only methyltransferase for H3K36me3, and our previous study has firstly demonstrated that it
functioned as one tumor suppressor in hematopoiesis. Consistent with it, SETD2 mutation, which led to its loss of
function, was identified in AML. However, the distribution and function of SETD2 mutation in AML remained largely
unknown. Herein, we integrated SETD2-mutated AML cases from our center and literature reports, and found that
NPM1 mutation was the most common concomitant genetic alteration with SETD2 mutation in AML, with its
frequency even higher than MLL rearrangement and AML1-ETO. Though this result indicated the cooperation of
SETD2 and NPM1 mutations in leukemogenesis, our functional study showed that SETD2 was required for the
proliferation of NPM1-mutated AML cell line OCI-AML3, but not MLL-rearranged AML cell line THP-1, via maintaining
its direct target NPM1 expression, which was just opposite to its role of tumor suppressor. Therefore, we speculated
that SETD2 possibly had two different faces in distinct subtypes and stages of AML.
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To the editor
SETD2 has been demonstrated as one tumor suppres-

ser in hematopoiesis [1], and SETD2 mutation affected
AML, in which its distribution remained not fully under-
stood [2]. Herein, we analyzed the SETD2 mutation in
NPM1-mutated AML.
One 36-year-old woman was committed due to ab-

dominal pain and fever for 7 and 3 days, respectively. PB
test showed WBC: 52.4 × 109/L, Hb: 98 g/L, PLT: 48 ×
109/L, circulated blast: 80%. BM examination exhibited
67.5% myeblasts with the immunophenotype of CD11b-
CD13dim + CD14-CD15dim + CD33 + CD34partial + CD35-
CD38dim + CD45 + CD64-CD65dim + CD71 + CD117 +
CD123dim + HLA-DR-. Though karyotype was normal
and CBF or MLL rearrangements were negative, NPM1,
SETD2, NRAS and ETV6 mutations were identified.

Therefore, AML with mutated NPM1 was diagnosed.
After receiving the operation for co-existed acute appen-
dicitis, she accepted IA regimen as induction therapy,
and CR1 was achieved. Subsequently, she received three
cycle of medium-dose cytarabine regimen. However,
AML relapsed at the 3 months after cessation of chemo-
therapy, and 72% myeloblasts re-emerged in BM. Due to
the early recurrence, she accepted HAA and CLAG regi-
men successively, and achieved CR2. However, the
leukemic clones were not eradicated reflected by persist-
ent above mutations. Therefore, allogeneic semi-
compatible HSCT was immediately conducted. As
follow-up, CR was still maintained at the 15 months after
HSCT (Fig. 1a).
In this patient, SETD2R2109X was identified, and it was

also found in other malignancies from COSMIC data-
base (Fig. 1b), so SETD2R2109X was one driver in cancer.
However, SETD2 deficiency was not sufficient to gener-
ate AML, so additional hits were required [1, 3]. There-
fore, we reviewed AML studies involving SETD2
mutation [2, 4–9], and found that NPM1 mutation
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rather than MLL rearrangement or AML1-ETO was the
most common co-existed genetic alteration of SETD2
mutation in AML (Fig. 1c-d). To establish their associ-
ation, we displayed subgroup analysis in above studies,
then submitted it Pearson’s chi-square test, and calcu-
lated OR. Strikingly, SETD2 and NPM1 mutations were
the concomitant mutation in AML (P = 0.031; OR =
3.28) (Fig. 1e-f). To address whether SETD2 mutation
mediated drug resistance in AML, we analyzed their
therapeutic response to standard chemotherapy. Among
22 SETD2-mutated AML patients, the data were avail-
able in 11 patients, while CR, PR, and NR was 72.7%,
9.09%, and 18.2%, respectively. Notably, the CR was
comparable to it in total AML. Interestingly, all with
NPM1-mutated AML achieved CR, and two with MLL-
rearranged AML exhibited NR. Therefore, SETD2 muta-
tion was possibly not one determinant in drug sensitiv-
ity for AML. Furthermore, we analyzed the OS between
SETD2- mutated and wild-type groups with cBioPortal
database [10, 11], but no significance between two
groups was found (Additional file 1: Figure S1). Regret-
fully, the data about EFS were not available.
Loss of SETD2 function accelerated the progression of

MLL-rearranged or AML1-ETO-positve AML, but
whether it was the same in NPM1-mutated AML
remained unknown. Herein, we displayed shRNA-
mediated SETD2 knockdown, which simulated its loss of

function caused by SETD2 frame-shift or nonsense mu-
tation, in NPM1-mutated AML cell line OCI-AML3 and
MLL-rearranged AML cell line THP-1. Interestingly,
SETD2 knockdown impaired the proliferation of OCI-
AML3 but not THP-1 cells (Fig. 2a-d). Furthermore, the
proliferative defect of OCI-AML3 was caused by in-
creased cell apoptosis (Fig. 2e) and cell cycle arrested at
G1/G0 phase (Fig. 2f). It has been reported that the via-
bility of OCI-AML3 relied on the function of NPM1 mu-
tation [12], while NPM1 expression was regulated by the
transcriptional activation mark, H3K36me3, which indi-
cated by ChIP-Seq in the HSPCs of Mll-af9-positive
leukemia (Fig. 2g) [13]. Consistently, we demonstrated
that NPM1 and its direct targets MEIS, HOXA9 were
significantly down-regulated in SETD2 knockdown OCI-
AML3 cells (Fig. 2h-i). Therefore, our results indicated
that SETD2 knockdown-mediated OCI-AML3 prolifera-
tion inhibition was possibly attributed to NPM1 down-
regulation.
The detailed role of SETD2 mutation in NPM1-mu-

tated AML remained mysterious. Theoretically, SETD2
and NPM1 mutations probably cooperated in
leukemogenesis. However, our results showed that
SETD2 was required for the maintenance of OCI-AML3.
To our knowledge, two possibilities existed: firstly,
SETD2 mutation played different roles in the initiation
and maintenance of NPM1-mutated AML; secondly,

Fig. 1 The distribution of SETD2 mutation in AML. a One SETD2-mutated AML case in our center. b SETD2R2109X-mutated cancers in our report
and COSMIC database. c SETD2-mutated AML cases from literature reports. d The common concomitant genetic alterations with SETD2 mutation
in AML patients from literature reports. e and f The frequency of SETD2 mutation in NPM1Mut or NPM1WT AML (e) and it of NPM1 mutation in
SETD2Mut or SETD2WT AML (f) were calculated, and all AML cases from our study and literature reports mentioned above were involved
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additional genetic alteration influenced SETD2 function
in NPM1-mutated AML. Therefore, further investiga-
tions were needed in the furture.
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Additional file 1: Figure S1. The OS of SETD2- wild type and mutated
AML patients from the summary of TCGA, TARGET, and OHSU studies.
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leukemia; BM: Bone marrow; ChIP-Seq: Chromatin immunoprecipitation-
sequencing; CLAG: Cladribine, cytarabine plus granulocyte colony-stimulating
factor; CR: Complete remission; EFS: Event-free survival duration;
H3K36me3: Tri- methylated histone 3 lysine 36; HAA: Homoharringtonine,
aclacinomycin, plus cytarabine regimen; HB: Hemoglobin;
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progenitor cells; IA: Idarubicin plus cytarabine regimen; MDS: Myelodysplastic
syndrome; NR: No response; OR: Odds ratio; OS: Overall survival duration;
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Fig. 2 SETD2 was required for the maintenance of NPM1-mutated AML cell line OCI-AML3. a and b The proliferation (a) and SETD2 expression (b) of
scramble and SETD2 knockdown OCI-AML3 cells. c and d The proliferation (c) and SETD2 expression (d) of scramble and SETD2 knockdown THP-1 cells.
e Annexin-V staining for detecting cell apoptosis in OCI-AML3 cells. f PI staining for cell cycle analysis in OCI-AML3 cells. g NPM1 has been demonstrated
as one direct target of H3K36me3 in the literature report. h and i The expression of NPM1 (h) and its direct downstream targets, MESI and HOXA9 (i), was
analyzed in scramble and SETD2 knockdown OCI-AML3 cells. ***, P< 0.001; **, P< 0.01; *, P< 0.05; T test was used for each graph
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