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Abstract

Recurrent gene mutations have been described with varying frequencies in myelodysplasia (MDS) /myeloproliferative
neoplasm (MPN) overlap syndromes (MMOS). Recent work has placed significant focus on understanding the role of
gene lesions involving the spliceosomal machinery in leukemogeneis. SRSF2 is a gene encoding critical spliceosomal
proteins. SRSF2 mutations appear to play an important role in pathogenesis of MMOS, particularly in chronic
myelomonocytic leukemia. Inhibition of splicing may be a new therapeutic approach. E7107, a spliceosome
inhibitor, has been shown to differentially inhibit splicing more in SRSF2-mutant cells leading to decreased
leukemia burden in mice. H3B-8800 is a small molecule modulator of spliceosome complex and has been shown to
lower leukemia burden in SRSF2-P95H mutant mice. This review focuses on the incidence of mutant SRSF2 across various
MMOS as well as recent clinical development of spliceosome inhibitors.

Background
Myelodysplastic and myeloproliferative overlap syndromes
(MMOS) were initially recognized as a unique entity in the
third edition of WHO classification of myeloid neoplasms
[1]. This group initially had three disorders - chronic mye-
lomonocytic leukemia (CMML), atypical chronic myeloid
leukemia, BCR-ABL1− (aCML), and juvenile myelomono-
cytic leukemia (JMML). The fourth entity, MDS/MPN with
ringed sideroblasts and thrombocytosis (MDS/MPN-RS-T,
previously known as RARS-T), was added in the 2016 revi-
sion of WHO classification [2]. Currently, MMOS also
includes a fifth group, MDS/MPN unclassifiable, which is
inclusive of all other MDS/MPN -like syndromes that do
not meet diagnostic criteria for the above.
With the increasing use of next-gene sequencing and

molecular studies in clinical practice, new patterns of
gene mutations are being reported in myeloid neoplasms
[3–8]. These mutations are being used as biomarkers for
classification and druggable targets [9–12]. A variety of small
molecules including ruxolitinib, enasidenib, midostaurin,

and AG-120 are in clinical applications and/or late-stage
clinical development [13–21].
MDS/MPN overlap syndromes can present with over-

lapping clinical and morphological features of both MDS
(peripheral cytopenia and/or dysplastic bone marrow)
and clonal proliferation (leukocytosis, thrombocytosis or
organomegaly) during the initial diagnosis [22]. Genomic
aberrations have been reported at a frequency as high as
75% along with multiple somatic mutations [23]. Most
common mutations reported are TET2, ASXL1 and/or
SRSF2 in CMML, NRAS/KRAS in JMML, SETBP1 in
aCML and JAK-STAT and/or SF3B1 in MDS/MPN-RS-T
[24–27]. This review focuses on SRSF2 mutations across
various entities of MMOS.

SRSF2
SRSF2 (Serine and arginine Rich Splicing Factor 2), also
called SC35 and SRp30b, belongs to the SR (Serine and
Arginine rich) protein family [28, 29]. It was recognized
first in 1990 by Fu and Maniatis using a monocloncal
antibody developed against mammalian spliceosomes [30].
It was reported to play a role in splicing during spliceosome
assembly [31, 32]. SRSF2 has a RNA recognition motif and
thus promotes spliceosome assembly at adjacent splice sites
to allow appropriate exon inclusion [28, 33, 34]. In addition,
SRSF2 was reported to play an active role in transcription
elongation and in coupling transcription and splicing pro-
cesses [35, 36].
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SRSF2 in oncogenesis
The oncogenic potential of SRSF2 was first demonstrated
in SRSF2 knock-out mouse embryo fibroblasts (MEFs).
SRSF2 mutation increased double-strand DNA breaks, p53
hyperphosphorylation and hyperacetylation with cell cycle
arrest [37]. Similar findings were also duplicated in mouse
hematopoietic cells, with growth arrest, early senescence
and apoptosis in SRSF2 deleted cells [38]. In another study
based on similar intervention, SRSF2 homozygous knock-
out mice showed 70–90% loss of thymocytes with signifi-
cantly increased CD4-/CD8- T cells and decreased CD4
+/CD8+ T cells. Thus, loss of SRSF2 seemed to affect T cell
maturation in thymus, possibly secondary to altered spli-
cing of CD45 as reported in the study [39].
While loss of SRSF2 led to decreased survival, mutant

SRSF2 (SRSF2-mut) expression was associated with onco-
genesis. Direct association of SRSF2 in development of
myelodysplasia was demonstrated in SRSF2-P95H mutant
mice [40]. P95H is the most common mutation site in the
SRSF2 gene [41–45] and its proximity to RRM site of
SRSF2 might play a role in altering RNA binding abilities
[38] [46]. Heterozygous P95H mutant and homozygous
SRSF2 deleted bone marrow mononuclear cells led to
development of significant leukopenia and anemia in
lethally irradiated recipient mice. However, only P95H
mutated mice developed macrocytic RBCs and had
normal bone marrow cellularity in contrast to bone
marrow aplasia seen with homozygous SRSF2 deletion.
Peripheral erythroid and myeloid dysplasia was also
seen only with P95H mutant mice [40]. These findings
correlate with MDS findings in humans.
SRSF2 mutant cells have been shown to require wild-type

(WT) SRSF2 allele for the cell survival, explaining the
phenotypic differences between heterozygous and homo-
zygous genotypes [47]. Hemizygous SRSF2P95H/−mice
had shorter survival with severe bone marrow aplasia in
contrast to SRSF2P95H/+ mice (p = 0.004). Hemizygous
cells also showed two-fold higher mis-splicing events
compared to heterozygous cells [48]. Similar oncogenic
associations secondary to mis-splicing have also been
reported with other splicing factor mutations such as
U2AF1 and SF3B1 [49] [50, 51]. SRSF2 mutation fre-
quently occurs in close association with these and other
mutations [26, 42, 44]. During disease progression of
MDS, additional mutations are acquired [52].

SRSF2 in MDS/MPN overlap syndromes
CMML
In 2011, Yoshida et al. identified frequently recurring spli-
cing factor mutations in a cohort of adult patients with
myeloid neoplasms through performing whole-exome se-
quencing. SF3B1 (36%) was the most common mutation
followed by SRSF2 (25.6%), U2AF35 (16.9%) and ZRSR2
(10.5%) [8]. These mutations were more frequent and

comparatively more specific to the diseases with myelodys-
plastic features (MDS, CMML, t-AML and AML-MRC)
[43]. SRSF2 mutation was reported with a high frequency
of 28–47% [41–43, 53] in other cohorts of CMML patients
and was reported to be significantly associated with higher
age, higher hemoglobin, normal karyotype and TET2
mutation [26, 45, 54]. Interestingly, it occurred mutu-
ally exclusively with EZH2 mutation [42, 44]. No signifi-
cant association had been reported with leukocytosis,
blast percentage, WHO histologic categories (CMML-1
and CMML-2) or cytogenetic risk categories. No specific
morphological or immunohistochemical features in the
bone marrow (e.g. dysplasia, CD14 and CD34 positive
cells) were significantly associated with SRSF2 mutations
in a study done on MDS/MPN entities. SRSF2 testing on
bone marrow specimens was shown to be 44.4% sensitive
and 88.1% specific in diagnosing CMML over MDS or
MPN; with modest positive likelihood ratio of 3.73 [45].
SRSF2 has been associated with worse survival outcomes

in low-risk MDS patients and PMF [43, 44, 55] but evi-
dence has not been very clear among MDS/MPN overlap
syndromes. Earlier studies investigating SRSF2 mutations in
MDS/MPN overlap syndromes reported no influence of
SRSF2-mut on overall survival (OS) either in CMML or
other MDS/MPN overlap syndromes [26, 42, 56]. The
only impact SRSF2-mut had on survival was noted by
Meggendorfer et al. analyzing a series of CMML pa-
tients. Patients co-harboring RUNX1 and SRSF2 muta-
tions appeared to have improved OS compared to those
who possessed wild-type (WT) variants.
An international cohort study showed poor OS outcomes

associated with the SRSF2 mutations in CMML patients
aged ≤65 years but with non-significant difference among
leukemic transformation rates [57]. Similar outcomes with
decreased OS along with decreased progression free sur-
vival (PFS) or leukemia free survival (LFS) were also re-
ported in two studies that enrolled 56 and 312 CMML
patients, respectively [27, 58]. Additional factors that nega-
tively influenced OS as per multivariate analyses were older
age (> 65 years, p = 0.04), WBC > 15 × 109/L (p < 0.0001),
presence of anemia (hemoglobin < 10 g/dL in women
and < 11 g/dL in men; p = 0.0002), thrombocytopenia
(< 100 × 109/L; p < 0.0001) and an absolute lymphocyte
count (ALC) > 4 × 109/L (p = 0.03) [27, 56]. Genotypi-
cally, ASXL1 was the only mutation which predicted in-
ferior OS and LFS in multivariate analyses.
Multiple prognostic models based on phenotypic and

cytogenetic characteristics have been developed for
CMML. These include the MD Anderson Prognostic
Score (MDAPS) [59], the Spanish Cytogenetic Risk
Stratification [60] and the CMML Prognostic Scoring
System (CPSS) [61]. The MDAPS and the CPSS were
dependent on clinical factors and/or basic laboratory
findings. The CPSS also incorporated the Genetic Risk
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Score as determined by the Spanish risk stratification.
More recently, attempts have been made to incorporate
ASXL1 mutation status into these models based on previous
data regarding impact on survival. Recently, two more prog-
nostic models were proposed; the Groupe Francophone des
Myelodysplasies (GFM) model [27] and the Mayo molecular
model [62]. Of note, the GFM model was validated in a
separate cohort of 165 patients with a median follow up
of 27.3 months [27].
The CPSS was also updated to incorporate the impact

of multiple mutations including ASXL1, NRAS, RUNX1
and SETBP1. The updated system, named CPSS-Mol,
assigned variable scores to different mutations as well as
the cytogenetic abnormalities [63]. A composite score was
then determined using phenotypic variables as defined by
CPSS and the “Genetic Risk Group”. Four risk categories
were delineated and the scoring system was validated in a
separate cohort of 286 patients. Lastly, prognostic implica-
tions of different types of missense mutations occurring at
the P95 site of SRSF2 gene have also been reported; the
P95H variant being reported to have better outcomes
compared to P95L or P95A [42]. Table 1 summarizes the
various studies evaluating SRSF2 mutation frequency and
reported impact on overall and progression free survival
in CMML.

JMML
Among a cohort of 371 children, SRSF2 mutation was
only seen in 2 patients and both with normal karyotype
along with co-existing RAS mutations [64]. Both patients
received HSCT in the study. One relapsed with loss of

SRSF2 mutation at relapse; while RAS mutation persisted.
In two other studies, only 1/76 patients with JMML
carried a SRSF2 mutation [26, 65]. This mutation had not
been described previously and was reported as in-frame
deletion in contrast to mis-sense mutations seen in adults.
Although morphologically similar, genotypic characteris-
tics of JMML are distinct from those of CMML with RAS,
PTPN11, NFI and CBL. Rarity of splicing factor mutations
in JMML and their loss at progression of disease likely
precludes their independent role in its pathogenesis. The
frequency of SRSF2 mutations in JMML was summarized
in Table 2.

Atypical CML, BCR-ABL1−

Atypical CML (aCML) is a rare entity among MDS/MPN
overlap syndromes characterized by the absence of the
BCR-ABL1 fusion gene as well as rearrangements of the
PDGFRA, PDGFRB or FGFR1 genes [24]. ASXL1 (20–
70%), SETBP1 (25–30%) and TET2 (43%) mutations are
the most common mutations detected in aCML [66, 67].
SETBP1 mutations correlate with worse survival out-
comes [68]. A high frequency of SRSF2 mutations (40%)
was reported among a cohort of 60 aCML [54] while its
frequency has been reported variably in other studies
[67, 69, 70]. SRSF2 mutation appears more frequently
with ASXL1-mut (p = 0.01) and SETBP1-mut (p = 0.004)
compared to WT.

MDS/MPN-RS-t (RARS-t)
This entity was previously known as refractory anemia
with ringed sideroblasts and thrombocytosis (RARS-T)

Table 1 SRSF2 mutations in chronic myelomonocytic leukemia

Reference Disease Frequency of SRSF2 mutation Effect on Survival Effect on disease progression

[8] CMML 28.4% NR NR

[42] CMML 47% (129/275) No No

[53] CMML 46% (173/409) NR NR

[41] CMML 40% (90/226) No No

[43] CMML 28% NR NR

[64] CMML 20% (1/5) NR NR

[26] CMML 32% (28/87) No NR

[77] CMML (Chinese population) 20% (10/50) No No

[45] CMML 44% (16/36) No NR

[57] CMML (aged < 65 years) 45% (72/161) Yes No

[58] CMML 25% (14/56) Yes Yes

[27] CMML 46% (143/312) Yes Yes

[56] CMML 40% (90/226) No No

[52] CMML 45% (116/274 NR No

[54] CMML 51% (74/146) NR NR

[67] CMML 53% (31/58) NR NR

CMML Chronic Myelomonocytic Leukemia, NR not reported
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and defined under the MDS/MPN-U umbrella diagnosis.
This disease has now been accepted as a separate entity
in 2016 revision of WHO classification [2]. Splicing fac-
tor mutations are common in this group, with SF3B1
being the most frequently occurring mutation (85–91%)
[67, 71, 72]. SF3B1 mutation status is strongly associated
with increased number of ringed sideroblasts (p = 0.006).
JAK2 (33–59%), TET2 (10–31%) and ASXL1 (20–29%)
are the other frequently occurring mutations in this
entity. SRSF2 is comparatively less common (2–9%) and
is mostly present in association with other mutations in
genotypes carrying high mutation burden [71]. In a co-
hort of 75 patients, SRSF2 was present in 5 cases and all
of them carried ≥4 mutations [60], suggesting that it is
less likely to play a driver mutation role in this entity
(Table 2).

MDS/MPN – Unclassifiable
MDS/MPN-U is another rare entity with heterogenous
dysplastic and proliferative features except some distinct
associations such as isolated trisomy 8 seen in about
15% of cases compared to MDS (5%) and MPN (4%)
[73]. JAK2 mutation is one of the most common (23–
66%) mutations reported in this group [67] but has not
been reported to have prognostic importance. Other
mutations occur in comparable frequencies, ASXL1 and
TET2 (36%), U2AF1 (18%), SRSF2 (15%) and SF3B1
(13%). Overall, MDS/MPN-U presents a mixed picture
as opposed to other MMOS. Thrombocytosis has been
associated with improved survival in this group [73]
but role of SRSF2 in pathogenesis or as prognostic indi-
cator has not been well defined yet (Table 2).

Therapeutic implications of SRSF2
Aberrant spliceosome function secondary to mutated
SRSF2 has been associated with mis-splicing of multiple
genes (e.g. EZH2, RUNX1, BCOR, IKAROS and CASP8,
etc.) that are implicated in pathogenesis of myeloid neo-
plasms [40, 43]. Inhibition of splicing has been analyzed
as possible therapeutic target. E7107, a spliceosome in-
hibitor, has shown to differentially inhibit splicing more
in SRSF2-mut cells leading to decreased leukemia burden
in mice [47]. A phase 1 clinical trial investigating E7107 in
metastatic or locally advanced solid tumors was discontin-
ued prematurely due to vision loss reported as adverse
event in 2 cases [74]. A parallel phase I trial conducted in
Europe also reported one instance of grade 4 visual dis-
turbance secondary to optic neuritis which improved after
treatment with steroids. Nevertheless, the study was dis-
continued for safety concerns [75].
Another compound, H3B-8800, acts as a modulator of

the SF3b complex. It has demonstrated a preferential cyto-
toxic effect on SF3B1-mutant cells secondary to GC-rich
intronic retention [76]. Decreased leukemic burden was
reported in SRSF2-P95H mutant mice compared to SRSF2-
WT variants. A phase I clinical trial (NCT02841540) is un-
derway to evaluate safety of this compound in patients with
MDS, AML and CMML.

Conclusion
SRSF2 is a frequent mutation seen in MDS/MPN overlap
syndromes, especially CMML. It has been shown to play a
multi-faceted role during the oncogenesis of these disorders
influencing transcription, splicing, translation and genomic
stability. There is insufficient evidence to establish it as a
primary driver mutation. Conflicting data on its prognostic
role especially in CMML demand further evaluation to
differentiate worse prognostic outcomes due to presence of
SRSF2 mutation as opposed to other factors (e.g. presence
of increased mutation burden). Targeting mis-splicing
events secondary to splicing factor mutations with novel
spliceosome inhibitors is an exciting approach with mul-
tiple possible therapeutic implications.
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