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Mutations in the isocitrate dehydrogenase 2 gene
and IDHT SNP 105C > T have a prognostic value
in acute myeloid leukemia
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Abstract

Background: The isocitrate dehydrogenase (IDH1/IDH2) genes are metabolic enzymes, which are frequently
mutated in acute myeloid leukemia (AML). The enzymes acquire neomorphic enzymatic activity when they
mutated.

Methods: We have investigated the frequency and outcome of the acquired IDH1/IDH2 mutations and the IDH1
SNP 105C > T (rs77554137) in 189 unselected de novo AML patients by polymerase chain reaction amplification
followed by direct sequencing. The survival are presented in Kaplan Meier curves with log rank test. Multivariable
survival analysis was conducted using Cox regression method, taking age, risk group, treatment, IDH1/2 mutations
and IDHT SNP105 genotype into account.

Results: Overall, IDH1/2 mutations were found in 41/187 (21.7%) of the AML patients. IDHT codon 132 mutations
were present in 7.9%, whereas IDH2 mutations were more frequent and mutations were identified in codon 140
and 172 in a frequency of 11.1% and 2.6%, respectively. The SNP 105C > T was present in 10.5% of the patients,
similar to the normal population. A significantly reduced overall survival (OS) for patients carrying IDH2 codon 140
mutation compared with patients carrying wild-type IDH2 gene (p < 0.001) was observed in the intermediate risk
patient group. Neither in the entire patient group nor subdivided in different risk groups, IDHT mutations had

any significance on OS compared to the wild-type IDHT patients. A significant difference in OS between the
heterozygous SNP variant and the homozygous wild-type was observed in the intermediate risk FLT3 negative AML
patients (p = 0.004).

Conclusions: Our results indicate that AML-patients with IDH2 mutations or the IDHT SNP 105C > T variant can
represent a new subgroup for risk stratification and may indicate new treatment options.
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Background

Acute myeloid leukemia (AML) is a hematological ma-
lignancy caused by acquired genetic alterations in genes
affecting the normal proliferation and terminal differen-
tiation of myeloid progenitor cells. Based on cytogenetic
abnormalities, cases of AML are usually classified into
three groups, with favorable, intermediate and adverse
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prognosis [1]. The largest group is the intermediate risk
group in which patients with cytogenetically normal
karyotype (CN-AML) constitute about 45% of de novo
AML [2,3]. These patients form a heterogeneous group
where some achieve complete remission and become
long term survivors, while others rapidly relapse, often
with a more aggressive or resistant disease. The overall
5-year survival is 35-40%, but less than 15% in AML pa-
tients above the age of 60 [4]. During the last decades,
several new mutations with prognostic impact have been
identified in AML. These include internal tandem dupli-
cations (ITDs) in the fms-like tyrosine kinase 3 (FLT3)
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gene, conferring an adverse prognosis, and nucleophos-
mine 1 (NPM1) gene mutations, which in the absence of
FLT3-ITD confer a favorable prognosis [5-8]. Both these
genes have become clinically established prognostic
markers in CN-AML. However, there is still a large group
of intermediate risk patients without FLT3-ITD/NPM1I
mutations or other reliable prognostic markers, highlight-
ing the need for additional markers that could explain the
differential outcome in this heterogeneous patient group.

Genome-wide analysis in patients with AML have iden-
tified further genetic markers, thus extending the possibil-
ities for more accurate prognostic distinctions between
subgroups, and might aid the clinicians in treatment deci-
sions such as choice of chemotherapy regime or early stem
cell transplantation (SCT).

The isocitrate dehydrogenase (IDH) 1 and 2 genes
were identified to be mutated in AML [9]. The IDH
family consists of three isoforms, IDH1, IDH2 and IDH3
where IDHI is located in the cytosol, while IDH2 and
IDH3 are located in the mitochondrion and are normally
involved in citrate metabolism in the tricarboxylic acid
cycle [10]. The IDH1 and IDH2 enzymes are encoded
by the IDHI gene at chromosome 2q33 and the IDH2
gene resides at chromosome 15q26. The enzymes are
NADP"-dependent to catalyze isocitrate oxidation to
a-ketoglutarate (a-KG) and the cofactor NADPH is gen-
erated. Mutations in the IDHI genes were first identified
in malignant gliomas [11,12] and subsequently IDHI
mutations were frequently found in AML [9] and later
also recurrent IDH2 mutations were found in AML
[13-15]. No mutations have been reported in the IDH3
gene. IDHI1/2 mutations are usually heterozygous with
one wild-type allele and one mutant allele, affecting
the arginine at codon 132 in exon 4 in the IDHI gene,
codon 140 and codon 172 in exon 4 in the IDH2
gene. The mutants acquire neomorphic enzymatic activ-
ity by converting «-KG to 2-hydroxyglutarate (2-HG)
[16,17]. Studies have shown that IDH1/2 mutations are
associated with epigenetic alterations, by inhibiting the
function of TET2, a DNA demethylase enzyme which
activity is dependent on o-KG and essential for DNA
demethylation. Mutations in the IDHI or IDH2 genes
favour 2-HG production and decrease the amount of
a-KG, resulting in a hypermethylation phenotype and
impaired hematopoietic differentiation [18,19]. Further, a
synonymous single nucleotide polymorphism (SNP)
(rs11554137) located in codon 105 in exon 4 in the
IDH1 gene, was recently reported to be of prognostic
value in both adult and paediatric AML patients [20,21].

In this study we aimed to investigate the frequency
of the acquired IDHI and IDH2 mutations and the
SNP 105C>T (rs11554137) located in the IDHI gene
and correlate the different genotypes to the outcome in
AML patients.
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Results

IDH1 and IDH2 mutation analysis

All patients were successfully genotyped for IDHI codon
132 mutations, IDH2 codon 140 and codon 172 muta-
tions, and for the IDHI codon 105 SNP (rs11554137)
(Table 1). Mutational data distributions in the entire co-
hort and in patient subgroups are presented in Table 2.
In total, IDH1/2 mutations were found in 41/189
(21.7%) of the AML patients. Fifteen patients (7.9%)
had mutations in codon 132 in the IDHI gene resulting
in four different amino acid exchanges, arg > his (7/15),
arg >cys (6/15), arg>leu (1/15) and arg>gly (1/15).
IDH?2 mutations were found in exon four at codon 140
in 21 (11.1%) of the patients and at codon 172 in 5
(2.6%) of the patients. For IDH2 codon 140 mutations,
two amino acid exchanges were detected: arg > gln (20/21)
and arg > gly (1/21). For IDH2 codon 172 mutations all
were arg >lys exchanges (5/5). Mutations in the IDHI
gene were mutually exclusive with mutations in the IDH2
gene (Table 1).

No significant differences between IDH genotype groups
in terms of median age at diagnosis, gender, treatment re-
gime, or distribution of FLT3/NPMI mutations were
found in the patient cohort. However, the median age at
diagnosis appear to be higher in patients with mutated
IDH gene (IDH1 or IDH2) than in patients with wild-type
IDH gene (69 vs. 62 years, respectively, p = 0.036, Table 2).

Impact of IDH1 and IDH2 mutations on treatment
response and overall survival
We found no significant difference on OS for patients
with IDH1 codon 132 mutations, neither in the entire
group nor when stratified in different risk groups.
Mutations in the IDH2 gene codon 140 revealed a sig-
nificant increased risk for shorter OS in the whole pa-
tient group in relation to the wild type IDH2 codon 140,
(HR =1.94; 1.07-3.53; 95% confidence interval, p = 0.03)
(Cox regression Table 3; 15 patients with missing karyo-
type data where excluded from the analysis). This was
most pronounced among the intermediate risk group

Table 1 IDH1 and IDH2 mutations and SNP 105C>T in
189 AML patients

Gene Nucleotide change Amino acid change Number of patients
IDH1  CGT >TGT R132C 7

IDHT ~ CGT > CAT R132H 6

IDHT ~ CGT > GGT R132G 1

IDH1  CGT >CTT R132L 1

IDH2  CGG > CAG R140Q 20

IDH2  CGG > GGG R140G 1

IDH2  AGG > AAG R172K 5

IDHT  GGC > GGT G105G 20
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Table 2 Patient characteristics and distributions of IDH mutations for all patients and within groups
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CHARACTERISTIC All IDH1 codon 132: IDH1 codon 105 IDH2 codon 140: IDH2 codon 172:
(synonymous SNP):
Total n=189 Wild type  Mutation  Wild type  Variant ~ Wild type Mutation Wild type  Mutation
Age median (range), years 64 (19-88) 63 (19-85) 70 (30-88)* 64 (19-88) 66 (29-84) 63 (19-88) 66 (37-83)* 64 (19-88) 72 (46-74)*
Gender
Male 95 90 5 85 10 85 10 92 3
Female 94 84 10 84 10 83 Il 92 2
Karyotype
Normal 108 99 9 95 13 96 12 106 2
Aberrant 75 69 6 68 7 66 9 72 3
Missing data 6 6 6 6 6
Risk group
Low 32 31 1 30 2 29 3 31 1
Intermediate 87 80 7 72 15 75 12 86 1
High 55 51 4 52 3 51 4 52 3
Missing data 15 12 3 15 13 2 14 1
FLT3 status
FLT3 wild type 116 109 7 104 12 101 15 114 2
FLT3-ITD 37 34 3 32 5 33 4 36 1
Missing data** 36 31 5 33 3 34 2 34 2
NPM1 status
NPM1 wild type 99 92 7 87 12 88 " 96 3
NPM1 mutation 52 49 3 47 5 44 8 52 0
Missing data** 38 33 5 35 3 36 2 36 2
Induction treatment response
Complete remission 132 122 10 119 13 119 13 127 5
Not complete remission 49 44 5 43 6 43 6 49 0
Missing information 8 8 0 7 1 6 2 8 0
IDHT codon 132
Wild type 174 157 17 153 21 169 5
Mutation 15 12 3 15 0 15 0
IDHT codon 105 (synonymous SNP)
Wild type 169 151 18 165 5
Variant 20 17 3 19 1
IDH2 codon 140
Wild type 168 163 5
Mutation 21 21 0
IDH2 codon 172
Wild type 184
Mutation 5

*Mann-Whitney test for difference in age distribution between patients with IDH mutation (/DHT or IDH2) and IDH wildtype patients, median 62 vs 69 years; p = 0.036.
**FLT3-ITD and NPM1 mutations were not routinely analyzed in all non-normal karyotype patients.

patients with a median OS 6 vs. 18 months, for mutated
and wild type patients, respectively, p = 0.001, (Figure 1A;
entire cohort presented in Figure 1B). Patients with IDH2
codon 172 mutations showed an improved survival in the

entire patient group compared to patients with wild type
IDH2 codon 172 in cox regression analysis (HR =0.22;
0.07-0.74; 95% confidence interval, p=0.014) (Table 3)
and Kaplan Meier analysis, (p = 0.09, Figure 2).
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Table 3 Cox regression of overall survival, forced entry
method

Covariates N HR 95% Cl p
Age 1022 1.002-1.042  0.033
Risk group

Low risk 32 1

Intermediate risk 87 2980 14955942  0.002
High risk 55 5993 2912-12333 <0.001
Treatment

Chemotherapy 118 1

Chemotherapy + allo-SCT 56 0231 0.118-0450 <0.001
IDHT codon 132

Wild type 162 1

Mutated 12 0816  0.390-1.708 0.59

IDH2 codon 140

Wild type 155 1

Mutated 19 1942  1.068-3.530 0.030
IDH2 codon 172

Wild type 169 1

Mutated 5 0222 0.067-0.738 0.014
IDHT SNP codon 105 GGC > GGT

Wild type 154 1

Variant 20 149  0812-2.756 0.196

95% Cl=95% Confidence interval; HR = Hazard ratio.
Significant P-values (P <0.05) in boldface.

There were no significant differences in the distribu-
tion of IDHI or IDH2 genotypes among patients with
CR and no CR.

The IDH1 SNP variant influences overall survival

All patients were successfully genotyped for IDHI codon
105 SNP (rs11554137) (Table 1) that was not associated
with the IDH mutations (only 7 overlapping cases; 3 in
IDHI and 4 in IDH2). The synonymous SNP (GGC >
GGT) was found in 20 patients (10.6%) in the entire co-
hort. Kaplan Meier curves with log rank tests also re-
vealed a significant difference in OS between the IDHI
codon 105 SNP variants, where heterozygous carriers of
the T allele displayed a shorter survival compared to pa-
tients with homozygous wild-type C alleles. This was sig-
nificant only in the intermediate risk FLT3-ITD negative
AML patients. In this risk group, the median OS was 20
vs. 6 months for codon 105 wild-type C/C and variant
T/C patients, respectively, (p = 0.004, Figure 3). It should
be noted that all the intermediate risk FLT3-ITD nega-
tive patients with the codon 105 T allele were also nega-
tive for NPMI mutations. However, in cox regression
analysis the codon 105 SNP did not display independent
significance due to other stronger factors affecting the
outcome in the entire cohort (Table 3).
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Discussion

Mutations in the IDHI and IDH2 genes in AML are re-
ported as being associated to diverse outcomes by differ-
ent groups [22]. Mardis et al. [9] was the first to identify
mutations in the IDHI gene as a new recurrent mutation
associated with CN-AML. Further, Marcucci et al. [13] re-
ported two different mutations in the IDH2 gene (R140
and R172) in AML. In the present study we have investi-
gated the frequency and impact of IDH mutations on out-
come according to the different clinical risk groups,
normal/aberrant cytogenetics, and also according to the
FLT3 and NMPI mutation status in 189 unselected AML
patients. In our study cohort we found IDHI and IDH2
mutated in 21.7% of the cases. IDH2 mutations were more
common than IDHI mutations (13.8% vs 7.9%). The fre-
quency of IDHI mutations (7.9%) in our AML cohort is
similar to previous reports of unselected AML patients
(5.5%-10.4%) [9,14,15,17,23-26]. The IDH2 mutations have
been reported to have a prevalence of 6.1%-17.7% in unse-
lected AML [15,17,24-28], as compared to 13.8% in our
study group. Investigation of the influence on OS in the
entire study population (no selection in karyotypes, risk
groups or FLT3/NPMI status) for IDHI mutations con-
ferred no significant difference compared to wild-type
IDHI, nor when statistical stratification was applied. In
some studies, an influence on OS is seen with IDHI muta-
tions for patients with CN-AML or intermediate risk
group according to the FLT3/NPMI status [13-15,23,28],
while other groups could not detect any impact on sur-
vival with mutated IDHI gene, which is in accordance
with our results [9,20,24,26]. Furthermore, in our cohort
we also found a slightly higher median age at diagnosis in
patients with mutated IDHI gene than in patients with
wild type IDHI. Our cohort covered a wide age span in-
cluding both younger and older patients, but future stud-
ies investigating the impact of IDH mutations specifically
in older AML patients could be warranted.

Two hotspot mutations are found in exon 4 in the IDH2
gene, R140 and R172. In our cohort we found R140 to be
altered with a frequency of 21/189 (11.1%) and R172 in 5/
189 (2.6%) patients. We found prognostic significance on
OS for the IDH2 codon 140 mutations, where the inter-
mediate risk patients with codon 140 mutations revealed a
significantly shorter OS than codon 140 wildtype. IDH2
codon 172 mutations were identified in a low frequency,
only in 5 individuals, and were provided with a favorable
outcome in our study cohort. However, Ward et al. noted
a trend toward improved survival for patients with IDH2
codon 140 mutations and also Green et al. reported an
unexpected favorable outcome associated with IDH2 R140
mutations and an unfavorable outcome for patients with
IDH2 R172 mutation [17,27]. Patel et al. also found a fa-
vorable effect for patients with mutant /DH2 codon 140
[29]. However, in the study of Green et al., there was a
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Figure 1 Kaplan-Meier curves of OS, IDH2 codon 140. (A) Significant differences in OS between IDH2 codon 140 genotypes in intermediate
risk AML patients. Median OS 6 vs. 18 months (p < 0.001) for IDH2 codon 140 mutated patients and wild-type patients, respectively. (B) OS for
AML-patients with mutated or unmutated IDH2 codon 140 in the entire group, median OS 9 vs. 14 months, respectively (p = 0.278).
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difference in patient median age at diagnosis compared
to our study cohort, 43 vs. 64 years respectively. In the
study of Patel et al. the patients’ median age at diagnosis
also was much lower than in our cohort, 48 vs. 64 years

respectively. These may indicate that the effect of the
IDH?2 mutations is seen in elderly patients.

Figueroa et al. [18] have shown that IDH mutant enzymes
may result in a global DNA hypermethylation profile,
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Figure 2 Kaplan-Meier curve of OS, IDH2 codon 172. The low frequency of AML-patients with mutated /DH2 codon 172 showed a tendency

towards improved OS survival compared to wildtype IDH2, OS 30 vs. 12 months, p = 0.09.
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Figure 3 Kaplan-Meier curve of OS, IDHT codon 105 SNP. Significant differences in OS between codon 105 genotypes in FLT3-ITD negative

intermediate risk patients; median OS 6 vs. 20 months (p = 0.004) for codon 105 variant allele and wild-type patients, respectively.
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blocking the cellular differentiation in hematopoietic cells
through inhibition of demethylation of 5-metylcytosine
(5-MeC) mediated via TET2. TET2 require a-KG for
demethylation of 5-MeC and, other studies have demon-
strated that the mutation dependent metabolite 2-HG is
sufficient to promote leukemogenesis when mutated IDHI
and IDH2 convert o-KG to 2-HG [30]. The TET2 gene is
also identified to be mutated in de novo AML (7-23%) and
is mutually exclusive with /DH1/2 mutations [31].

The synonymous SNP 105C>T, located in the same
exon, but only overlapping in three cases, as R132 in the
IDH]I gene, was also analyzed in our study. IDH2 mutations
simultaneously with the codon 105 variant were found in
three patients with codon 140 mutation and in one case
with codon 172 mutation. The frequency of the SNP was
20/189 (10.6%) in the entire cohort, and almost the same
frequency (11.7%) has been reported among healthy volun-
teers by a German group [20]. The same group also re-
ported this SNP to correlate to an inferior prognosis in
CN-AML [20]. In accordance with this, we found a pro-
nounced significant inferior overall survival in intermediate
risk FLT3-ITD negative patients carrying the variant codon
105 allele. The biologic effect of the silent SNP remains to
be investigated in AML. One speculative explanation with a
synonymous SNP is that it will cause a change in the rate
of the protein translation resulting in affected protein fold-
ing and altered function of the protein [32], or cause a new
splicing site. Potentially the T variant enables a new splice
site (GTGG[C/T]ACGG > GTGgtacgg), resulting in a pos-
sible mRNA difference of 100 bp. Calculation of splice-site
scores by using the Analyzer Splice Tool (http://ibis.tau.ac.
il/ssat/SpliceSiteFrame.htm) would give a score of 72.5 to
the potentially new splice site with the T variant compared
with the natural splice site at the end of exon 4, which gives
a score of 88.1. To test this possibly new splice site, we se-
quenced cDNA in three patients from this study with the
SNP T allele, but the results provided no difference in se-
quence length between the C or T alleles, and thus no new
splice variant was detected.

In summary, our results identified in total 21.7%
IDH1/IDH2 mutations in the study population. Our re-
sults indicate that the IDH2 codon 140 mutation have
the highest potential as a prognostic marker, further
stratifying intermediate risk patients.

In addition, the synonymous SNP 105C>T in the
IDHI gene may be a novel prognostic marker in AML
of intermediate risk FLT3 negative patients however,
this has to be confirmed through future studies. These
markers may be especially useful in this heterogeneous
group of AML patients, where other prognostic markers
are absent and the outcomes vary widely. Further, stud-
ies have been carried out on possible new drugs by tar-
geting the mutant IDH enzyme on leukemia cells,
resulting in inhibition of accumulation of the 2-HG
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oncometabolite and subsequently differentiation of the
AML blasts [33,34].

Conclusions

IDH mutational status and/or IDH1 SNP 105C > T vari-
ant may represent a new subgroup of AML patients and
have the potential as tools for selecting patients expected
to benefit the most from the new treatment alternatives.

Methods

Patients

This study included 189 Swedish patients diagnosed with de
novo AML at Linképing University Hospital and Karolinska
University Hospital in Huddinge between 1988 and 2010.
The inclusion of the patients in this study was not con-
secutively included. Median age at diagnosis was 64 years,
range 19-88 years. Patient characteristics are summarized
in Table 2. Bone marrow or peripheral blood samples col-
lected at diagnosis were used to isolate DNA for further
genetic analysis. Risk group assignment at diagnosis was
based on cytogenetic and molecular genetic findings as
defined by ELN (European Leukemia Net) [35] and Inter-
national Working Group recommendations [36], and
other prognostic factors such as age, performance status
and comorbidity, with minor modifications (see Swedish
Hematology Association guidelines, http://www.sthem.se/
Filarkiv/Nationella-riktlinjer accessed 2013-05-28). Swedish
AML patients diagnosed in 2004 or later have been treated
according to nationwide AML treatment guidelines (http://
www.sfthem.se/Filarkiv/Nationella-riktlinjer, accessed 2013-
05-28). Thus, the majority of the patients received induc-
tion treatments including daunorubicin 60 mg/m? once a
day for three days combined with Cytarabine (AraC) as
1000 mg/m? twice a day in 2 h i.v. infusions for 5 days. Be-
fore 2004, regional guidelines most commonly included
AraC doses of 200 mg/m” as 24 h iv. infusions for 7 days
combined with three days either daunorubicin or idarubi-
cin [37]. Some patients also received other drugs in com-
bination with daunorubicin/idarubicin and/or AraC, such

Table 4 Induction treatment regimes

Regime N (%)
Daunorubicine and Cytarabine (n=116) or Daunorubicine, 118 (62.4)
cytarabine and mitoxantrone (n=2)

|darubicine and Cytarabine (n = 26) or Idarubicine, 29 (15.3)
Cytarabine and Etoposide (n=3)

Idarubicine, Cytarabine and Cladribine 20 (10.6)
Mitoxantrone, cytarabine and Etoposide (n=7) or 9 (4.8)
Mitoxantrone and Cytarabine (n =2)

Daunorubicine, Cytarabine and 6-Thioguanine 8 (4.2)
Other/unknown' 5(2.6)

"Including 2 in clinical trial of combination therapy with Tipifarnib, and 1 with
Fludarabine, Cytarabine and G-CSF. 2 patients with unknown treatment but
known curative intent.
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as Mitoxantrone, Etoposide, 6-Thioguanine and Cladri-
bine. For further treatment details, see Table 4. Treatment
response was evaluated as non-complete remission (no
CR) or morphologic complete remission (CR) [36]. Pa-
tients treated by allogeneic stem cell transplantation (allo-
SCT) (n =59) were censored at the time of transplantation
in the survival analysis. Informed consent was obtained
from the patients and the study was approved by the local
ethical committees and conducted in accordance with the
Helsinki declaration.

IDH1 and IDH2 genotyping analysis

Mononuclear cells from either peripheral blood or bone
marrow were enriched by Ficoll-Paque density centrifugation
at the time of diagnosis and genomic DNA was extracted.
For IDH1 and IDH2 genotyping analysis, a PCR reaction
was performed in a total volume of 20 pl containing
10-50 ng DNA, 0.5U Taq DNA polymerase, 2 mM MgCl,,
0.2 mM dNTPs, 1xPCR buffer, 1 pM each of IDHI for-
ward primer (5ctcagagccttcgcetttctg) and reverse primer
(5'cacatacaagttggaaatttctgg) and of IDH2 forward primer
(5'ggggttcaaattctggttga) and reverse primer (5ctaggcgag-
gagctccagt). The terminal cycling conditions for both
IDH1 and IDH2 were an initial denaturation at 94°C for
2 min followed by 35 cycles at 94°C for 30 s, 55°C for 30 s,
72°C for 30 s and an end extension at 72°C for 5 min. The
PCR product was purified by using ExoSAP-IT and direct
sequencing was performed by using BigDye Terminator
v3.1 Cycle Sequencing Kit (AB Applied Biosystems). The
IDH1/2 sequences were compared to the wild type IDHI1/
2 to detect the genetic variations (NM_005896.2 and
NM_002168.2 respectively).

Statistical analysis

Fisher’s exact test was used to compare differences in geno-
type distribution between patients with CR and no CR.
Mann Whitney Test or Fisher’s exact test was used to in-
vestigate differences between genotype groups in terms of
age, gender and karyotype distributions, or other character-
istics. Kaplan Meier survival analysis with log rank test for
significance was used to evaluate the impact of IDHI and
IDH?2 genotype on overall survival (OS) (calculated as time
from diagnosis until death, date of the latest follow-up, or
date of allo-SCT). Multivariable survival analysis was con-
ducted using Cox regression with a forced entry method,
taking age, risk group, treatment, /DH1/2 mutations and
IDH1 SNP105 genotype into account. The impact of IDH
genotype was evaluated in the entire patient material and
in subgroups stratified by risk group and FLT3 status. A
p-value of 0.05 was considered significant, and all analyses
were performed using IBM SPSS Statistics v.20.
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