Skip to main content
Fig. 2 | Biomarker Research

Fig. 2

From: Paediatric acute myeloid leukaemia with the t(7;12)(q36;p13) rearrangement: a review of the biological and clinical management aspects

Fig. 2

Schematic representation of the t(7;12)(q36;p13) and fusion transcript formation. a Representation of the 7q36 and 12p13 regions spanning 1 Mb around the genes of interests. The breakpoints are proximal to the HLXB9 gene on chromosome 7 and at the 5′ end of the ETV6 gene on chromosome 12. HLXB9 is a small gene composed of three exons. ETV6 is a larger gene composed of eight exons. In both cases the direction of transcription is from the telomeric to the centromeric end. b The gene location and direction of transcription of both HLXB9 and ETV6 are shown on the ideograms of chromosomes 7 and 12. For each gene all the exons are indicated. c Derivative chromosomes 7 and 12: the der(12) harbours the whole HLXB9 gene and the 3′ portion of ETV6 including exons 3–8. If a fusion transcript arose from this translocation, splicing of HLXB9 exons 2 and 3 as well as any genomic material from chromosome 7 downstream to HLXB9 that was translocated on the der(12) should take place

Back to article page