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Micro-RNAs, New performers in multiple myeloma
bone marrow microenvironment
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Abstract

The established interaction between multiple myeloma cells and bone marrow microenvironment components
provides malignant cells with various survival, growth and drug resistance signals. As a new concept, identification
of miRNAs and their related gene/protein targets, signaling molecules and pathways in the context of bone marrow
microenvironment will help understanding more deeply the pathogenesis of the disease and possible mechanisms
underlying environment-induced drug resistance. Recent studies suggest that bone marrow stromal cells can modulate
some miRNAs (miR-21, miR-15a/16) in multiple myeloma cells through direct adhesion, cytokine secretion or transfer
of miRNA-containing exosomes, however; the specific miRNA targets are not clear. In spite of a remarkable progress in
understanding myeloma biology and therapy, the disease persists to be hard to treat. This review will discuss the most
recent findings on miRNAs expression and function in the context of bone marrow microenvironment highlighting the
miRNAs as potential therapeutic targets in multiple myeloma.
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Introduction
To survive and expand, multiple myeloma (MM) tumor
cells have to be in a dynamic interaction with their stromal
environment [1,2]. The profound effect of bone marrow
stroma on malignant cells makes the bulk tumor resistant
to drugs and invasive [2,3]. The latter interaction perhaps
has been fully investigated in multiple myeloma. However,
the not-clearly-determined mechanisms underlying cell
adhesion-mediated drug resistance (CAM-DR) in MM
cells in the context of bone marrow microenvironment
(BMME) components warrants continuous research to
allow identification of more potential drug targets. In
developing drugs for MM treatment, little focus has
been made on disrupting the above interaction, and
variety of drug targets have been identified in isolated
MM cells in no interaction with BMME [4-6]. Thus
these systems cannot provide a more appropriate reflection
of MM cells drug response in the bone marrow. miRNAs
(miRs) have become an interesting research focus in MM
as these molecules are mostly deregulated in MM, can
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have multiple targets (which may be oncogenes or tumor
suppressor genes, e.g. MYC,TP53, PTEN) and have proved
to significantly influence MM tumor in vitro and in vivo
[7-12]. However, most findings cannot reflect the miRs
biology in BMME context, while results obtained from
some related B cells malignancies strongly support the
concept that bone marrow stroma would have regulatory
effects on some miR-mediated events including CAMDR.
miRNAs in MM: “small but stunning performers”
miRs belong to a class of small non-coding RNAs (22–
25 nt. in length) which repress the expression of their
target genes at translational level by binding to 3′UTR
through partial sequence complementarity [13]. Recent
studies indicate that miRs could play role in MM pro-
gression and pathobiology. It has been shown that the
expression of some miRs is higher /or lower in MM cells
compared to their normal counterparts [5,10,12]. miRs
may target various genes involved in controlling cell
cycle, proliferation and apoptosis. If the targets are tumor
suppressor genes, miRs are considered as oncomiRs con-
tributing to tumor pathogenesis, while some other miRs
functioning as tumor suppressors could be downregulated
by the oncogenic process. In support of this, Pichiorri
et al. demonstrated that miRs 192, 194 and 215 in MM
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were positive regulators of p53 but repressed in newly
diagnosed patients contributing to disease progression
[8]. They also demonstrated that MGUS and MM displayed
a unique miR expression signature [5]. For instance, miR-
32 and miR-17~92 cluster were selectively upregulated in
MM cells and HMCLs but not in monoclonal gamopathy
of undetermined clinical significance (MGUS) and normal
plasma cells. In addition, miRs19-a/b (part of the mir-
17~92 cluster) downregulated suppressor of cytokine
signaling-1 (SOCS-1) expression (which is normally an
inhibitor of IL-6 signaling but frequently silenced in MM)
thus maintaining MM cells growth and proliferation.
Microarray analysis in another study also revealed a
distinct mostly up-regulated miR signature in MM
samples and cell lines compared to MGUS and normal
plasma cells, with some miRs being associated with
specific MM chromosomal isotypes [7]. The latter findings
indicate that some miRs may play prognostic roles in
MM. More importantly, miRs have also been indicated
to mediate drug resistance in MM cells enforcing our
understanding of the mechanism of chemoresistance in
MM patients [14,15]. In spite of all the findings on
miRs in MM with respect to involvement in various
functional responses, the mechanism (s) regulating expres-
sion and function of miRs in MM has not been explicitly
elucidated, but one possible mechanism may be epigenetic
control of miR genes [16,17], however; our knowledge
of this potential mechanism in MM is still scanty.
Nonetheless, studies conducted in recent years on MM
miR biology and function, have now opened a new window
to MM targeted therapy exploiting miRNA analogues
or their antagonists. More interestingly, combination of
miRs or their inhibitors enhance anti-myeloma activity
of chemotherapeutic drugs [18].

miR-mediated functions in MM cells in bone marrow
microenvironment context
It is now understood that miRs mediate substantial
functions in tumor microenvironment (reviewed at [19]
(see Table 1). Bone marrow microenvironment (BMME)
Table 1 Expression and relevant regulatory functions of some
BMME components

miRNA Expression pattern Function

miR-15a/16 Down-regulated Regulating MM ce
by targeting cyclin

miR-15a/16 Down-regulated induction of BMSC

miR-21 Up-regulated Induction of BMSC
pathway and by ta

miR-199a-5p Down-regulated Regulating bone m
modulating interac

miR-135b Up-regulated Up-regulated in M
with MM cells, imp

miR-199a, −24-3p, 15a-5p, 16-5p Down-regulated Down-regulated in
components especially bone marrow stromal cells and
fibronectin protect MM cells against (drug-induced)
apoptotic signals. This protective shield occurs mostly
due to adhesion of MM cells to BMSCs leading to cyto-
kine and growth factor secretion by later cells (or both),
activation of various genes and signaling pathways in
both cell types, and induction of cell adhesion mediated
drug resistance (CAM-DR) in MM cells [20-22]. Regarding
the fact that MM pathogenesis can largely be explained
based on MM-stroma interactions, investigating miRs in
this context will be more attractive in terms of detection
of potential therapeutic targets. Notably, the role of
miRs in modulating tumor cells interaction with stroma
for maintaining tumor load, shaping metastasis and help-
ing development of tumor-associated fibroblasts has been
well highlighted [23,24].
Lin J et al. established a model comprising lymphoma

cells adhered to BMSCs (HS-5 cell line) or lymph node
stroma (HK cell line) [25,26]. Using global gene expression
arrays, they found a remarkably changed expression pat-
tern of several miRs in lymphoma cells adhered to stroma
cells. More noticeably, miR-548m was underexpressed in
adhered lymphoma cells but its ectopic overexpression
suppressed stroma-induced clonogenic growth and drug
resistance, and triggered apoptosis. Although very limited
research as such has been performed in MM, obtaining
closely related findings should not be unexpected. Xudong
et al. studied the expression pattern and function of miR-
21 in MM cells adhered to BMSCs and found that miR-21
expression was increased in HMCLs adhered to BMSCs
which was partly regulated through NFκB signaling path-
way [27]. They also observed that bortezomib reduced
miR-21 expression in MM cell-BMSC co-culture, how-
ever; it was not clear whether bortezomib targeted MM
cells, BMSCs or both to down-regulate miR-21.
In a more recent study, Emanuela et al. also demon-

strated that HMCLs with low miR-21 expression (INA-6)
displayed a high expression of miR-21 when adhered to
BMSCs. miR-21 inhibition significantly decreased viability
and clonogenic growth of MM cells but in stroma-free
investigated miRs in MM cells in the context of
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conditions [18]. Of note, they showed that anti-tumor
activity in MM cell-BMSC co-cultures was induced only
when MM cells were transfected with miR-21 inhibitor
but not the BMSCs. This suggests that miR-21 inhibition
in MM cells counteract protective function of BMSCs in
co-culture experiments.
Roccaro et al. reported a miR signature in MM cells

indicating downregulation of miR-15a/16-1 [10]. Specif-
ically, they showed that miR-15a/16-1 ectopic expression
reduced DNA synthesis, cell cycle and proliferation in
MM cells, and decreased their adhesion to BMSCs. How-
ever, this study did not show the expression pattern and
function of miR-15a/16-1 in MM cells following adhesion
to BMSCs.
Later on, Hao et al. also observed that BMSCs main-

tained survival of MM cells and protected them from
bortezomib-induced apoptosis through suppressing miR-
15a in MM cells [28]. Of note, miR-15a/16-1 is located
on chromosome 13q14 (a region most commonly deleted
in MM), and complete absence of miR-15a/16-1 has been
found in MM cells with this deletion [10]. On the other
hand, another study revealed a heterogeneous expression
pattern not correlated with chromosome 13 status [29].
Interestingly, it is reported that in B-chronic lymphocytic
leukemia (B-CLL), miR-15a/ 16–1 are hosted by DLEU2, a
regulatory gene which is frequently deleted in CLL leading
to repression of miR-15-a/16 (thus cell cycle progression,
proliferation and anti-apoptosis) [30]. It remains to be
determined whether the above gene also hosts miR-15/
16-1 in MM. BMSCs in MM could express miRs which
should also be considered in MM pathogenesis. Re-
portedly, expression of some miRs (miR-16, miR-223,
miR-485-5p and miR-519d) and adhesion molecules
genes in MM-BMSCs is higher than in normal counter-
parts [31]. Furthermore, some miRs have been reported
to be modulated in BMSCs or MM bone marrow mes-
enchymal stem cells following interaction with MM cells
contributing to angiogenesis induction (199a-5p) [32]
or osteogenesis impairment (135b, 24-3b, 15a-5p) [33,34]
(see also Table 1).

Mediators/targets of miR-related signaling in MM in the
context of BMME
To understand the biology of miRs in MM cells in
BMME, expression and function of miRs should be
explored in above context, because only in that case
can we trace any miRs link with bone marrow milieu-
induced events especially CAM-DR. In fact since the
effects of MM cells-BMSCs interaction are mutual, in
experimental and animal models of MM-BMSC interaction
it should be characterized what signals are triggering miRs
expression alterations in MM cells (illustration at Figure 1).
Does the BMSCs induce miR expression changes in MM
cells through induction of adhesion-related signals in latter
cells?, does it happen due to influence of some cytokines/
mediators released by BMSCs?, is the altered expression
of miRs in MM cell-BMSC co-cultures a function of
co-operative interaction (miR change in both cell types)
or the inductive effect of one cell type upon the other?,
and finally, are miRs associated with integrin signaling
pathways in MM cells following adhesion to ECM proteins
such as FN?. To find answers, several studies in recent
years have provided some clues. For instance, it has been
reported that IL-6 secreted by BMSCs increases drug
resistance and reduces apoptosis of MM cells through
suppression of miR-15a/16-1 [35], yet how IL-6 performs
and what the miR targets are, have not been mechanistically
characterized. More interestingly, another study showed
that BMSCs transfer exosomes containing miR-15a into
MM cells inducing their proliferation and survival [36].
Indeed miR-containing exosomes have been reported to
play important roles in pathogenesis of various cancers
[37]. RhoB, BTG, and PTEN have been indicated to be
targets of miR-21 in MM cells [18], however; these
findings were obtained in a stroma-free condition, thus
not highlighting their real function in the context of
bone marrow milieu. Lwin T et al. using in vitro and
in vivo investigations found that stromal cells contrib-
uted to sustained c-Myc upregulation and miR-548m
downregulation through a c-Myc/miR-548m feed-forward
amplification loop leading to lymphoma cell growth and
proliferation [26]. They also showed that miR-548m by
directly targeting HDAC6, linked HDAC6 upregulation
with lymphoma cell survival and drug resistance. Whether
c-Myc can be similarly involved in miR-mediated func-
tions in BMSC-MM cell interaction needs to be further
investigated. The more important point in above study is
the involvement of an epigenetic mechanism in control-
ling miR-induced responses. Indeed, epigenetic mecha-
nisms have also been suggested to control miR-associated
functional responses in MM cells [16]. Intriguingly, miRs
192, 194 and 215 (transcriptional targets of p53) were
found to be hypermethylated in MM cells explaining their
lower expression in MM than in MGUS [8,17]. However,
it would be more interesting to investigate if BMSC or
ECM triggers such regulatory mechanisms in MM cells, as
given so, we may understand whether altered expression
and function of some miRs following MM cell-BMSC/
ECM interaction could underlie such events as CAM-DR.
With our current knowledge, we still don’t know how
miRs are modulated in MM cell-BMME context, and
which critical oncogenes or tumor suppressor genes are
targeted by miRs in this context.

Concluding remarks and future prospects
Research on biology and function of miRs tends to
achieve a hot spot in the field of MM therapy, with
some evidence to introduce miRs as promising therapeutic



Figure 1 Postulated schematic model indicating how BMSCs might influence expression and function of miRs in MM cells. Following
adhesion, integrin-mediated signaling in MM cells triggers activation of various pathways (mostly NFB, PI3K/Akt/mTOR, and Ras/MAPK). It is still
not known whether miRs associate with these pathways, whether modulation of miR gene expression occurs through these pathways, and
whether they induce some epigenetic mechanisms controlling expression of miRs. It has also been shown that BMSCs can transfer miR-containing
(15a) exosomes into MM cells to induce cell growth and proliferation. IL-6 has also been demonstrated to mediate miR-15a suppression in MM cells
following adhesion to BMSCs, but how this cytokine triggers such a response is not clear. Moreover, targets reported for some miRs (miR-21) in MM
cells, were not explored in BMME context, hence the potential targets of miRs in MM cells adhered to BMSCs are not well characterized yet nor is
there any information showing how these targets are affected by a putative integrin-miR axis. To identify potential targets of miRs in MM
cell-BMSC interaction, further exploration is required. Additionally, adhesion of MM cells to BMSCs has been shown to modulate some miRs in
BMSCs, leading to other disease-related complications such as angiogenesis and defective osteogenesis. However, to identify potential targets
of miRs in MM cell-BMSC interaction, further exploration is required.
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targets in MM [13]. However, most findings are indicative
of MM cells drug responses in the absence of BMME
irrespective of the fact that BMME plays a prominent
role in the pathogenesis of MM. To this end, several
in vitro and in vivo investigations have yielded important
clues that some miRs (miR-21 and miR-15a/16-1) might
play role in stroma-mediated drug resistance of MM cells
but the specific targets and the underlying mechanisms
are not clear yet. Moreover, the possibility of involvement
of other miRs, their potential targets, and involved sig-
naling pathways, warrants more in-depth research. As a
matter of fact, reinforcing our knowledge of miRs
expression and function in MM cell-BMME interaction
will help us to find potential drug targets to overcome
CAM-DR, which has been suggested to build the intrinsic
(de novo) drug resistance and contribute to acquired drug
resistance over time in MM patients [38-41].
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