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The emerging roles of Notch signaling in
leukemia and stem cells
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Abstract

The Notch signaling pathway plays a critical role in maintaining the balance between cell proliferation,
differentiation and apoptosis, and is a highly conserved signaling pathway that regulates normal development in a
context- and dose-dependent manner. Dysregulation of Notch signaling has been suggested to be key events in a
variety of hematological malignancies. Notch1 signaling appears to be the central oncogenic trigger in T cell acute
lymphoblastic leukemia (T-ALL), in which the majority of human malignancies have acquired mutations that lead to
constitutive activation of Notch1 signaling. However, emerging evidence unexpectedly demonstrates that Notch
signaling can function as a potent tumor suppressor in other forms of leukemia. This minireview will summarize
recent advances related to the roles of activated Notch signaling in human lymphocytic leukemia, myeloid
leukemia, stem cells and stromal microenvironment, and we will discuss the perspectives of Notch signaling as a
potential therapeutic target as well.
Introduction
The Notch signaling pathway is highly conserved from
Drosophila to human and plays an important role in the
regulation of cell proliferation, differentiation and apoptosis
[1]. Moreover, it has been suggested that Notch signaling
may be responsible for the development and progression of
human malignancies, including leukemia.
Notch signaling pathway
Notch and the ligands
Four members of Notch proteins have been identified to
date in mammals, including Notch1-4 [2-5]. The Notch
proteins are single-pass transmembrane receptors, which
are composed of extracellular, transmembrane and intracel-
lular domains. The extracellular domain of all Notch pro-
teins contain epidermal growth-factor-like repeats (EGFLR)
and three LIN Notch (LNR) repeats, whereas the intra-
cellular domain consists of the RAM23 domain (RAM)
and seven Ankyrin/CDC10 repeats (ANK), necessary
for protein-protein interactions. Moreover, five canonical
Notch ligands have been found in mammals: Dll1 (Delta-
like 1), Dll3 (Delta-like 3), Dll4 (Delta-like 4), Jagged1
and Jagged2 [2-5]. Notch ligands are transmembrane
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proteins of which the extracellular domain contains a
characteristic number of EGF-like repeats and a cyst-
eine rich N-terminal DSL domain, responsible for the
interaction with Notch receptors.

Notch signaling activation
Notch signaling has been shown to be initiated by binding
of the Notch transmembrane receptors with their specific
ligands between two neighboring cells [6]. Upon activation,
Notch receptors undergo a cascade of metalloprotease
tumor necrosis factor-α-converting enzyme (TACE) and
γ-secretase complex proteolytic cleavages, releasing the
Notch intracellular domain (NICD). Subsequently, the
NICD translocates into the nucleus and interacts with
the DNA binding protein CSL to regulate gene expression.
To date, only a few target genes have been identified. The
best-known Notch target genes are two families of basic
helixloop helix transcription factors: Hes (Hairy enhance
of split) and Hey (Hairy/enhancer of spit related with YRPW
motif) family [7]. Hes and Hey proteins are helix-loop-helix
transcription factors that function as transcriptional repres-
sors. Additionally, target genes of the Notch signaling path-
ways also include cyclin D1, c-myc, p21, p27, Akt, mTOR,
VEGF, etc., some of which are dependent on Notch signal-
ing in multiple tissues, while others are tissue specific [8-21]
(Table 1). Nevertheless, many target genes of Notch signal-
ing remain to be determined [8].
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Table 1 Target genes of the Notch signaling pathways

Gene Role Tissues Comments

cyclin D1, cyclin A , p21, p27, Cell cycle regulators Hepatocellular cancer, renal cancer [9,10]

c-myc, NF-κB2 , Akt, mTOR, Cell proliferation and survival Keratinocytes, liver, T-ALL, [11-16]

Hes1, Hes6 Embryonic development Embryonic neural progenitor cell, human pluripotent stem cells [17,18]

VEGF, VEGFR-2 Angiopoiesis Osteosarcoma, endothelial and neural cells. [19,20]

MMP-9, MMP-2 Invasion and metastasis Osteosarcoma, pancreatic cancer [19,21]

Table 2 Notch in B cell Lymphocytic leukemia

Gene Role Leukemia types Comments

Notch1 Tumor suppressor B-ALL [35]

Notch2 Oncogene B-CLL [37-39]

Notch3, Notch4 Tumor suppressor B-ALL [33,40]

Hes1 Tumor suppressor B-ALL [41]

Hes5 Tumor suppressor B-ALL [33]
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Notch signaling in lymphocytic leukemia
T cell lymphocytic leukemia
It has been shown that Notch signaling is abnormally
regulated in many human malignancies [22,23]. Notch1
mutations causing Notch signaling continuously activated
have been found in nearly 60% of T cell acute lymphoblastic
leukemia (T-ALL) patients, making Notch1 the most
prominent oncogene specifically involved in the patho-
genesis of T-ALL [24,25]. The characterize mutations
occur mostly in the heterodimerization (HD) domain
and proline, glutamic acid, serine, threonine-rich (PEST)
domain of the Notch1 receptor. HD domain mutation leads
to a COOH-terminally truncated NICD, whereas PEST
domain mutation results in loss of the negative regulatory
domain, escaping from FBXW7-mediated degradation and
prolongation of the half-life of NICD [26]. Notch1 muta-
tions have been shown to be an early, prenatal genetic
event in T-ALL patients [27]. In murine models of T-ALL,
Notch1 activation is responsible for directly inducing
leukemia and collaborating with other initiating genetic
events to perpetuate leukemic growth [28,29]. Moreover,
our previous study has shown that Notch1 signaling is also
required for hypoxia-induced proliferation, invasion and
chemoresistance in T-ALL, suggesting that pharmacological
inhibitors of Notch1 signaling may be attractive interven-
tions for T-ALL treatment [30].
Additionally, other Notch signaling and target genes are

also involved in the initiation and progression of T-ALL.
It has been reported that Notch3 and Hes1 are highly
expressed by T-ALL cells, as well as dramatically reduced
or absent in remission [31]. Downregulation of Notch3 by
small hair RNA (shRNA) has been found to suppress the
activity of Notch signaling, leading to growth inhibition
and apoptosis induction of T-ALL cells [32].

B cell lymphocytic leukemia
Interestingly, the function of Notch signaling in
leukemogenesis has been shown to be either oncogenic or
tumor suppressive, and it could be context dependent
[33,34]. Notch signaling and target genes have been dem-
onstrated to be tumor suppressive rather than oncogenic
in a limited number of leukemia types, including B-ALL
(Table 2). It has been reported that in contrast to T-ALL,
Notch3, Jagged1, Hes2, Hes4 and Hes5 were frequently
hypermethylated in B-ALL, associated with gene silencing
[33]. Furthermore, restoration of Hes5 expression by
lentiviral transduction could give rise to growth arrest and
apoptosis in Hes5 negative B-ALL cells but not in Hes5
expressing T-ALL cells [33]. Other investigators confirmed
the fact and showed that activated forms of the 4 mamma-
lian Notch receptors (NICD1-4) or hes1 was responsible
for growth inhibition and apoptosis enhancement in both
murine and human B-ALL [35-37].
In contrast with B-ALL, Notch signaling could maintain

B cell chronic lymphoblastic leukemia (B-CLL) cell survival
and apoptosis resistance, undoubtedly indicating an
oncogenic role in B-CLL. Emerging evidence suggests
that the Notch signaling network is frequently deregulated
in human B-CLL with up-regulated expression of Notch1
and Notch2 as well as their ligands Jagged1 and Jagged2
[42]. Moreover, Notch signaling inhibition by the gamma-
secretase inhibitors (GSIs) and the specific Notch2 down-
regulation using small interfering RNA (siRNA) could
promote B-CLL cell apoptosis [38,42]. It has been also
reported that Notch2 is not only overexpressed in B-CLL
cells but also might be related to the failure of apoptosis-
oriented treatment for this disease and deregulation of
Notch2 signaling is involved in the aberrant expression
of CD23 in B-CLL [39-41]. Taken together, these results
suggest that Notch signaling is constitutively activated in
B-CLL cells, and can sustain the survival of these cells.

Notch signaling in myeloid leukemia
Knowledge about the role of Notch signaling in acute
myeloid leukemia (AML) is equally poorly understood. Very
recently, Jagged1 and Dll1 were shown to be expressed at
significantly higher levels in acute promyelocytic leukemia
(APL) samples compared with all other subtypes, as well
as normal myeloid populations [43]. Inhibition of Notch
signaling by GSIs could reduce self-renewal and colony
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formation of Kit+Lin-Sca1+ cells from pre-leukemic
Ctsg-PML-RARA mice [43]. Our previous study has
also demonstrated that Dll4 and Notch1 expression
were significantly higher in untreated AML patients than in
the normal controls, and provides evidence that the activa-
tion of Notch signaling may indicate an unfavorable prog-
nosis in AML [44]. These data suggest that Notch signaling
can promot AML development [45]; however, other studies
have shown opposite function of Notch signaling in AML
(Table 3). A significant decrease in the levels of the Notch
ligand and activated receptors as well as target genes was
reported to be lower in AML samples than in normal
hematopoietic stem cells (HSCs), suggesting that Notch sig-
naling is not activated in AML [46-48]. Kannan et al. have
found that all four Notch homologues and Hes1 were suffi-
cient to inhibit the growth and induced caspase-dependent
apoptosis of AML, which were associated with B cell
lymphoma 2 (BCL2) loss and enhanced p53/p21 expression
[45]. Additionally, the dnMAML (a pan-Notch inhibitor)
could not affect AML proliferation in vitro but lead to dra-
matic increases in leukemia burden in two xenograft mouse
models, which was associated with p53 dysregulation [45].
The 17-aa peptide with Notch agonist activity was able to
activate Notch signaling to induce apoptosis of AML cells
[45,49,50]. Besides inducing apoptosis, the recombinant
Notch ligand proteins, Dll1 and Dll4 could alter AML
blast cells into macrophage-like cells morphologically and
increase the expression of differentiation markers such as
CD13 or CD14 [51]. Tohda et al. also found that the
Notch ligands tended to induce differentiation under the
specific conditions rather than promoted the self-renewal
capacity of AML cells [52]. Overall, different researchers
and experiment methods come to different conclusions,
illustrating the highly context-dependent nature of the
pathway. Due to the complexity of the Notch pathway and
limited tools to specifically modulate the this pathway, the
function of this signaling is still unclear, and additional
studies are needed to clarify the role of various Notch
receptors in AML.
Notch signaling appears to play a tumor suppressive

role in chronic myeloid leukemia (CML). It is reported that
overexpression of the active form of Notch1 or Notch2
in K562 cells resulted in the inhibition of proliferation,
accompanied by increased Hes1 mRNA level [54,55].
On the other hand, attenuation of Notch signaling by
Table 3 Notch in myeloid leukemia

Leukemia types Role Mechanism

Non-APL AML Tumor suppressor B cell lymphoma 2

APL Oncogene Jagged1 and Dll1 w
and colony formati

CMML Tumor suppressor Notch1–3−/− or Nc

CML Tumor suppressor Inhibition of prolife
overexpression of a dominant-negative RBP-J calledRBP-
JR218H led to the increased proliferation of K562 cells.
Moreover, activation of Notch signaling was found to in-
hibit the colony-forming activity of K562 cells while repres-
sion of Notch signaling played the opposite role [55]. These
results provide evidence that Notch signaling might play a
role as a tumor suppressor in CML.

Notch signaling in leukemia stem cells
Leukemia stem cells (LSCs) arise either from corrupted
HSCs or from more differentiated and committed progen-
itors that acquire self-renewal potential [56-58]. Therefore,
targeting this unique property of LSCs—self-renewal cap-
acity—is thought to be a promising way to eradicate disease
if one can determine which pathways are critical for LSC,
but not HSC. Notch signaling is active in HSCs in vivo and
downregulated as HSCs differentiated. Inhibition of Notch
signaling could lead to accelerated differentiation of HSCs
in vitro and depletion of HSCs in vivo [59,60]. Furthermore,
Notch1 drives cell fate decision (the choice between TCRγ/
δ orα/β and between CD4+ or CD8+) by inductive interac-
tions from thymic stromal cells [61,62], suggesting that
Notch1 expression is finely regulated during T-cell lineage
development [63]. Notch1 is also reported to plays a role in
rescuing T cells from apoptosis [64].
To date, the role of Notch signaling in LSCs has not

yet been examined adequately and seems to be context
dependent. Notch signaling was shown to be silenced in
CD34+/CD38- stem/multipotential progenitor populations
from AML patients compared to normal CD34+ stem cells.
Recently, inactivating mutations of Notch signaling have
been described in patients with chronic myelomonocytic
leukemia (CMML) [53]. In vivo studies have also revealed
both oncogenic and tumor suppressive functions for Notch
signaling (Figure 1). In an MLL-AF9–induced mouse AML
model, Notch signaling was inactive in CD34+/CD38-

stem/progenitor cells and upregulation of Notch signaling
using genetic Notch gain of function models could result in
the proliferation inhibition of this populations. Moreover,
in vitro activation of Notch signaling using synthetic Notch
ligand led to rapid cell cycle arrest, differentiation, and
apoptosis of AML-initiating cells [65]. Notch1–3−/− or
Ncstn−/− mice was also found to develop an aberrant
accumulation of granulocyte/monocyte progenitors (GMP),
extramedullary hematopoieisis and the induction of
Comments

(BCL2) loss and enhanced p53/p21 expression [45]

ere overexpressed. GSIs could reduce self-renewal
on of Kit + Lin-Sca1+ cell

[43]

stn−/− mice developed CMML-like disease [53]

ration [54,55]



Figure 1 Mouse models reveal dual roles for Notch receptors. Mouse models reveal that Notch receptors either promote or inhibit AML
development depending on the context.

Table 4 Clinical research of GSIs in the treatment of
leukemia

Test Preclinical study Phase I

Drug RO4929097 MK-0752

Methods 8 mice (leukemia models)
were used in each control
or treatment group.

Six adult and two pediatric
patients with leukemia
(seven with T-ALL and one
with AML) received MK-0752Percentages of human

CD45+ cells were
determined

Results No significance in
event-free survival [53]

Limited antitumor activity and
major gastrointestinal toxicity

Comments [75] [76]
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CMML-like disease. Furthermore, ectopic expression
of Notch1-IC or Hes1 could suppress the expression of
key GM commitment genes such as Cebpα and Pu.1,
and the CMML-like disease developing in the Ncstn−/−

animals [53]. However, an oncogenic role for Notch
signaling has been identified by other groups. Grieselhuber
et al. reported that Jagged1 was higher in Kit+Lin-Sca1+

cells from pre-leukemic Ctsg-PML-RARA mice, and both
genetic and pharmacologic inhibition of Notch signaling
abrogated the enhanced self-renewal seen in hematopoietic
stem/progenitor cells [43]. Taken together, increasing evi-
dence suggests that Notch signaling is involved in the regu-
lation of self-renewal capacity of LSCs in murine models
and human disease, and point out where Notch signaling
be uniquely required in leukemia.

Activation of Notch signaling by stromal microenvironment
Leukemia cell survival relies on leukemic microenviron-
ment, which is composed of bone marrow stromal cells
(BMSCs), endothelial cells and other factors. Accumulating
evidence emphasized the importance of Notch signaling
in the cross-talk between leukemia cells and their stro-
mal microenvironment. BMSCs were shown to induce
upregulation of Notch signaling molecules, such as Notch1,
Notch3 and4 or Jagged1/2 and Dll1 [40,66]. Moreover,
activation of Notch signaling by stromal microenvironment
were necessary for leukemia cell survival by preventing
blast cell apoptosis and favoring their reciprocal interac-
tions and cross-talk with bone marrow microenvironment
[66-68]. Our previous study reported that Notch-1 acti-
vation was induced by coculture with BMSCs and
down-regulation of Notch-1 increased cocultured Jurkat
cell sensitivity to chemotherapy [40,66]. Florence et al.
also found that coculture of primary human T-ALL with
a mouse stromal cell line expressing the Dll1 reproducibly
allowed maintenance of T-LiC and long-term growth
of blast cells through rescuing from apoptosis [69].
The molecular mechanisms of apoptosis resistance may be
associated with a variety of cytokines, such as IL-7 [70,71],
lymphocyte function-associated antigen-1 (LFA-1) and
intercellular adhesion molecule-1 (ICAM-1) [71]. Inactiva-
tion of Notch signaling resulted in the decrease of leukemia
cell survival, either cultured alone or cocultured in presence
of stromal cells from normal donors and leukemia patients
[40]. In addition, previous in vitro studies have demon-
strated that endothelial cells enhance proliferation and sur-
vival of AML cells [72]. Our study showed a bidirectional
cross-talk between endothelial and AML cells that had a
promoting effect on endothelial cell function, and eluci-
dated a novel mechanism by which the interplay between
AML and endothelial cells promotes angiogenesis through
VEGF activation of the Notch/Dll4 pathway [67].

Inhibitors of Notch signaling and the potential clinical
application
The specific and profound involvement of Notch signaling
in various leukemic types makes it an ideal target for
pharmacological intervention. Several strategies have been
proposed to inhibit or modulate this signaling [73,74].
The most widely used drug to globally inhibit Notch
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signaling is GSIs, which block the cleavage of Notch at the
cell membrane, inhibiting release of the transcriptionally
active Notch intracellular domain (NICD) subunit. A lot
of clinical research or preclinical testing have focused on
testing GSIs in the treatment of leukemia, but the results
were initially disappointing (Table 4). It has been reported
that RO4929097, one of GSIs, could induce insignificant
differences in event free survival distribution compared to
control in 0 of 8 (0%) of the evaluable ALL xenografts mice
[75]. A phase I clinical trial also showed that MK-0752,
another GSIs, had limited antitumor activity in relapsed
T-ALL patients [76]. What is more, GSIs are nonspecific
and can inhibit Notch signaling in the gut, leading to
gastrointestinal toxicity, which also limit its application.
However, in an attempt to the clinical application of GSIs,
dexamethasone was found to abrogate GSI-induced toxicity
in the gut and as well GSIs treatment could reverse gluco-
corticoid resistance in T-ALL patients [77]. Therefore, these
results supported a role for combination therapy with GSIs
plus glucocorticoids in the treatment T-ALL. In another
attempt to remedy this issue, inhibitory antibodies have
recently been synthesized for all Notch receptors. A
Notch1-specific antibody significantly induced cell cycle
arrest and reduced cell proliferation in T-ALL cells. More-
over, in mouse xenograft T-ALL and colon cancer models,
the Notch1-specific antibody could induce significant
tumor regression and slowing of growth [74], which would
pave the way for new clinical trials to evaluate the efficacy
of more selective and less toxic antibody-based therapies.
The overwhelming potential of Notch-based cancer treat-
ments cannot be ignored.

Conclusions
Controversy will remain, as we do not understand the
complexity of the Notch pathway and tools to specifically
modulate the Notch pathway are still limited. Further stud-
ies assessing the levels of Notch activation and inhibition in
leukemia still need to be carried out. Further advancement
in understanding the molecular events of Notch signaling
can potentially lead to further clinical benefit.
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