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Molecular signatures of chronic myeloid leukemia
stem cells
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Abstract

BCR-ABL tyrosine kinase inhibitors (TKIs) are effective in controlling Philadelphia-positive (Ph+) chronic myeloid leukemia
(CML) are unlikely to cure the disease because TKIs are unable to eradicate leukemia stem cells (LSCs) responsible for
the disease relapse even after tyrosine kinase inhibition. In addition, the TKI resistance of LSCs is not associated with the
BCR-ABL kinase domain mutations. These observations indicate that TKI-insensitive LSCs and TKI-sensitive leukemic
progenitor cells are biologically different, which leads us to believe that LSCs and more differentiated leukemic cells
have different genetic mechanisms. Further study of LSCs to identify the novel gene signatures and mechanisms that
control the function and molecular phenotype of LSCs is critical. In this mini-review, we will discuss our current
understanding of the biology of LSCs and novel genes that could serve as a molecular signature of LSCs in CML. These
novel genes could also serve as potential targets for eradicating LSCs in CML.
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Introduction
Human Philadelphia chromosome-positive (Ph+) leukemia
induced by the BCR-ABL oncogene is the most common
myeloproliferative disorder known as chronic myeloid
leukemia (CML). CML often starts with a chronic phase,
which is characterized by granulocytosis and splenomegaly.
The disease can progress to acute leukemia. CML starts
with a chronic phase and progresses to a more acute
terminal phase called “blast crisis” resulting in develop-
ment of acute myeloid or acute B-lymphoid leukemia,
which is characterized by granulocytosis and splenomegaly.
More than ten years ago, a BCR-ABL kinase inhibitor
called imatinib mesylate (Gleevec/Glivec, formerly STI571;
Novartis) was approved by FDA for treating CML patients
[1,2]. The rate of complete cytogenetic response among pa-
tients receiving imatinib was 87% after 5 years of treatment
[3]. Although it effectively inhibits the BCR-ABL kinase ac-
tivity and improves the survival of CML patients, imatinib
does not appear to lead to a cure of the disease, because
patients in complete cytogenetic remission after imatinib
treatment still contain BCR-ABL-expressing leukemia cells.
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One explanation is that survival of those primitive CML
cells were not dependent on BCR-ABL kinase activity so
that therapies that biochemically target BCR-ABL could
not eliminate CML stem cells [4,5]. Those CML patients
will most likely be required to take the drug for the rest
of their lives [6]. The resistance of LSCs to kinase inhib-
itors suggests that BCR-ABL may activate some unique
and unknown molecular signaling pathways through both
kinase-dependent and kinase-independent mechanisms
in LSCs [7].
BCR-ABL-expressing hematopoietic stem cells function as
LSCs of CML and are resistant to BCR-ABL kinase inhibitors
Cancer stem cells (CSCs), including LSCs in CML, con-
stitute a subpopulation of malignant cells capable of
self-renewal and differentiation [8-12]. Recently, CSCs
have been defined by their ability to repeatedly generate
a continuously growing tumor [13]. Weissman and col-
leagues proposed that a candidate CSC population should
exhibit the following properties: 1) The unique ability to
engraft; 2) The ability to replicate the tumor of origin both
morphologically and immunophenotypically in xenografts;
and 3) The ability to be serially transplanted [13].
CML occurs because of clonal expansion of BCR-ABL-

expressing hematopoietic stem cells. In CML patients, a
BCR-ABL containing leukemic clone typically produces
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Table 1 List of novel gene signatures in LSCs

Gene name Chr Gene function

β-catenin Chr3 Cadherin-associated protein

Smo Chr7 Smoothened, frizzled family receptor

Alox5 Chr10 Arachidonate 5-lipoxygenase

Scd1 Chr19 Stearoly-coenzyne A desaturase 1

Src kinase Chr20 Kinase

Selp Chr1 Granule membrane protein 140 kDa, antigen CD62

CD44 Chr11 Antigen

Msr1 Chr8 Macrophage scavenger receptor 1

Foxo3a Chr6 Forkhead box O3

Hif1α Chr14 Hypoxia inducible factor 1

Pten Chr10 Prosphatase and tensin homolog

Bcl6 Chr3 B cell leukemia/lymkemia 6

PML Chr15 Promyelocytic leukemia

PP2A Chr19 Protein phosphatase 2A
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the myeloid lineage cells and B-lymphoid cells. LSCs in
CML have some characteristics of normal hematopoietic
stem cells. The BCR-ABL retroviral bone marrow trans-
duction/transplantation mouse model has been widely
used to establish a more efficient CML mouse model for
studying the biology of LSCs [14]. By using the CML
mouse model, BCR-ABL-expressing Lin-c-Kit+Sca-1+

cells were shown to function as LSCs in chronic phase
CML [15].
BCR-ABL kinase inhibitors: imatinib, dasatinib and

nilotinib were developed to treat CML and imatinib now
serves as the frontline therapy for the patients with
chronic phase CML [16]. Even though it can control
CML development effectively, imatinib does not appear
to cure the disease. One possible reason is that LSCs are
insensitive to kinase inhibitors. Imatinib kills almost all
dividing cells; however, a significant population of viable
CD34+ cells are unaffected by the treatment and are
leukemic in nature [5]. The fact that imatinib could not
target the quiescent BCR-ABL-expressing LSCs made it
apparent that imatinib treatment alone could not cure
CML [5,17]. Human CML stem cells do not depend on
BCR-ABL kinase activity for survival and are thus not
eliminated by imatinib therapy. Imatinib inhibited BCR-
ABL kinase activity to the same degree in all stem (CD34+

CD38-, CD133+) and progenitor (CD34+CD38+) cells and
in quiescent and cycling progenitors from newly diagnosed
CML patients. Although short-term in vitro imatinib treat-
ment reduced the expansion of CML stem/progenitors,
cytokine support permitted growth and survival in the
absence of BCR-ABL kinase activity that was comparable
to that of normal stem/progenitor counterparts. Primitive
human CML cells are insensitive to imatinib treatment
and therapies that biochemically target BCR-ABL kinase
activity will not eliminate CML stem cells [18]. The min-
imal effect of BCR-ABL kinase inhibitor on LSCs was also
observed in the CML mouse model [15]. Neither imatinib
nor dasatinib show a complete eradication of BCR-ABL-
expressing HSCs.

Identification of novel gene signatures of LSCs in CML
Recently, several novel gene signatures in LSCs are iden-
tified to monitor the function and activity of LSCs after
CML patients receive BCR-ABL kinase inhibitors treat-
ment or other novel therapies (Table 1 and Figure 1).

Cell metabolism regulators
Arachidonate 5-lipoxygenase (Alox5) gene encoding
arachidonate 5-lipoxygenase (5-LO) is involved in nu-
merous physiological and pathological processes, includ-
ing oxidative stress response, inflammation and cancer
[19]. 5-LO is responsible for producing leukotrienes,
such as LTB4, LTC4 and LTD4, a group of inflammatory
substances that cause human asthma [19]. Altered
arachidonate metabolism by leukocytes and platelets was
reported in association with myeloproliferative disorders
almost 30 years ago. Recently, Alox5 was shown to be a
critical regulator for LSCs in CML. Alox5 is significantly
upregulated by BCR-ABL kinase and this upregulation
does not depend on its kinase activity. In the absence of
Alox5, BCR-ABL fails to induce CML in mice [20]. This
Alox5 deficiency caused impairment of the function of
LSCs but not normal hematopoietic stem cells (HSCs)
through affecting differentiation, cell division and sur-
vival of long-term LSCs, consequently causing a deple-
tion of LSCs and a failure of CML development. Similar
results were obtained when mice with CML were treated
with a 5-LO inhibitor. Human CML microarray studies
also showed that Alox5 is differentially expressed in
CD34+ CML cells, suggesting a role of Alox5 in human
CML stem cells. This data suggests that Alox5 and its
pathway plays an important role in self-renewal and dif-
ferentiation of LSCs and could be potential biomarkers
for monitoring the activity of LSCs in patients [20].

Stearoyl-CoA desaturase 1 (Scd1) is an endoplasmic
reticulum enzyme, belonging to a family of Δ9-fatty acid
desaturase isoforms. Scd1 catalyzes the biosynthesis of
monounsaturated fatty acids from saturated fatty acids,
which are the most abundant fatty acids present in mam-
malian organisms [21]. The expression of the Scd1 gene is
downregulated in LSCs and Scd1 plays a tumor-suppressive
role in LSCs with no effect on the function of normal
HSCs. Deletion of Scd1 causes acceleration of CML devel-
opment and conversely overexpression of Scd1 delays CML
development. In addition, Pten, p53, and Bcl2 are regulated
by Scd1 in LSCs. Furthermore, the induction of Scd1 ex-
pression by a PPARγ agonist suppresses LSCs and delays
CML development [22].



Figure 1 Different novel gene signatures regulate the function of LSCs.
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Genes related to normal development of hematopoietic
stem cells (HSCs)
β-catenin is a key factor in HSC development, and is ac-
tivated by Wnt ligand binding to the receptor. Its stabil-
ity after activation is highly regulated by a destruction
complex involving the tumor suppressor Adenomatous
Polyposis Coli (APC), the scaffolding protein that binds
newly synthesized β-catenin. Two kinases Choline Kinase
(CKI) and Glycogen Synthase Kinase 3β (GSK3β), phos-
phorylate Ser and Thr residues in the amino terminus
of β-catenin [23]. In CML patients undergoing blast crisis,
β-catenin is activated in myeloid progenitors and the acti-
vated β-catenin translocates to the nucleus [24]. In CML
mouse model, deficient of β-catenin causes a reduced abil-
ity of BCR-ABL to support long-term renewal of LSCs, as
shown in the serial replating and transplantation assays
[25]. The inhibitory role of β-catenin in LSCs is associated
with the decreased levels of p-Stat5α and associated with
the overexpression of ABCB1, which gives rise to the
multidrug resistance (MDR) phenomenon [25]. Antagon-
ism of this pathway also led to impaired NFATactivity, de-
creased cytokine production, and enhanced sensitivity to
BCR-ABL inhibition [26]. It is also known that increased
exogenous Wnt-mediated β-catenin signaling played an
important role in mesenchymal stromal cells -mediated
protection of CML progenitors from tyrosine kinase in-
hibitor treatment [27]. Wnt/β-catenin signaling pathway
was also shown to be required for the development of
LSCs in AML as well as CML [28].

Hedgehog (Hh) pathway plays crucial role during em-
bryonic development, tissue regeneration and repair in
adults. Zhao et al. (2009) have demonstrated that loss of
Smoothened (Smo), an important molecule of the Hh
pathway, impairs HSC renewal and results in depletion
of CML stem cells [29], although the effect of loss of Hh
signaling through conditional deletion of Smo on adult
hematopoiesis is still controversial [30,31]. The possible
mechanism for the Smo action may be the upregulation
of cell fate determinant Numb in the absence of Smo ac-
tivity, which is responsible for depletion of CML stem
cells [32]. Hh pathway activity is required for maintenance
of normal and leukemia stem cells of the hematopoietic
system.

Kinases
Src family kinases (SFKs) can be potential biomarkers
for BCR-ABL kinase inhibitor resistant CML stem cells.
SFKs were reported to be involved in tyrosine kinase
inhibitor-resistant CML and elevated SFK activities were
observed in patients with advanced disease in blast crisis.
In a study of four categories of imatinib- and dasatinib-
treated patients (imatinib resistant/dasatinib-responsive;
dasatinib-resistant; blast crisis or CML progression and
T315I or F317L mutated patient receiving omacetaxine
treatment) [33], transcriptional and translational levels of
HCK, LYN and another SFK-related gene BTK were ele-
vated in more than 50% of resistant CML patients. This
increase more significantly correlates with disease pro-
gression in a large population of CML patients. Interest-
ingly, activation of SFKs expression is not likely caused by
BCR-ABL mutation, as four BCR-ABL mutated patients
showed concomitant SFK activation similar to that seen in
patients expressing a wild-type BCR-ABL [33]. Recently,
in BCR-ABL-induced chronic myeloid leukemia animal
model, the Blk gene (encoding B-lymphoid kinase, a SRC
family kinase) was shown to function as a tumor sup-
pressor in LSCs but it did not affect normal HSCs or
hematopoiesis. Blk suppressed LSC function through a
pathway involving an upstream regulator, Pax5, and a
downstream effector, p27. Inhibition of the Blk pathway
accelerated CML development, whereas increased activity
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of the Blk pathway delayed CML development. Blk also
suppressed the proliferation of human CML stem cells [22].

Cell adhesion molecules
Adhesion molecules such as P-selectin (encoded by the
Selp gene) are essential for normal hematopoiesis, and
their dysregulation has been linked to leukemogenesis
[34-36]. Like HSCs, LSCs depend upon their microenvi-
ronments for survival and propagation. P-selectin plays a
crucial role in Philadelphia chromosome-positive CML
[34]. The cells deficient in P-selectin expression can re-
populate the bone marrow more efficiently than wild
type control cells [36]. This results from an increase
in HSC self-renewal rather than alternative possibilities
like increased homing velocity or cell cycle defects [36].
Recipients of BCR-ABL-transduced bone marrow cells
from P-selectin-deficient donors develop more aggres-
sive CML, with increased percentages of LSCs and pro-
genitors [34]. Taken together, P-selectin expression on
HSCs and LSCs may have important functional ramifica-
tions for both hematopoiesis and leukemogenesis, which
is most likely attributable to an intrinsic effect on stem
cell self-renewal [36].
Mouse BCR-ABL-expressing stem/progenitor cells ex-

press a higher level of CD44, which contributes func-
tional E-selectin ligands [37,38]. In a mouse retroviral
transplantation model of CML, BCR-ABL-transduced
progenitors from CD44-mutant donors are defective in
homing to recipient bone marrow, resulting in decreased
engraftment and impaired induction of CML. By contrast,
CD44-deficient stem cells transduced with empty retro-
virus engraft as efficiently as do wild-type HSCs. CD44
is dispensable for induction of acute B-lymphoblastic
leukemia by BCR-ABL, indicating that CD44 is specifically
required for leukemic cells that initiate CML. The require-
ment for donor CD44 is bypassed by direct intrafemoral in-
jection of BCR-ABL-transduced CD44-deficient stem cells
or by coexpression of human CD44. Antibody to CD44
attenuates induction of CML in recipients. These results
show that BCR-ABL-expressing leukemic stem cells depend
to a greater extent on CD44 for homing and engraftment
than do normal HSCs, and argue that CD44 blockade may
be beneficial in autologous transplantation in CML [37].
Loss of CD44 was also reported to be able to alleviate the
CML phenotypes in Kras G12D mice and attenuate aber-
rant GM-CSF signaling in Kras G12D cells [39].
Another cell adhesion molecule MSR1 is a muti-

functional cell surface receptor and downregulated by
BCR-ABL. This downregulation is partially restored by
Alox5 deletion, and that Msr1 deletion causes acceler-
ation of CML development [40,41]. Moreover, Msr1 de-
letion markedly increases LSC function through its
effects on cell cycle progression and apoptosis. MSR1
was also shown to affect CML development by regulating
the PI3K-AKT pathway and β-Catenin, which suggesting
that MSR1 suppresses LSCs and CML development [41].
The lower cell surface expression of MSR1 may also be
used to monitor the activity of CML stem cells in patients.

Transcription factor
Forkhead O transcription factor3a (Foxo3a) was shown
to play an essential role in the maintenance of LSCs
of CML. Cells with nuclear localization of FOXO3a
and decreased AKT phosphorylation are enriched in the
LSC population. Serial transplantation of LSCs from
Foxo3a +/+ and Foxo3a−/− mice shows that the ability of
LSCs to cause disease is significantly decreased by Foxo3a
deletion. Furthermore, TGF-beta is also shown to be a
critical regulator of AKT activation in LSCs and control
FOXO3a localization. A combination of TGF-beta inhib-
ition, Foxo3a deficiency and imatinib treatment led to effi-
cient depletion of CML in vivo [42]. The inhibitory effect
of FOXO3a on leukemia cells was shown through increas-
ing PI3K/AKT activity in drug-resistant leukemic cells
[43]. Recently, BCL6 proto-oncogene was also shown as a
critical effector downstream of FoxO in self-renewal sig-
naling of CML stem cells [43].

Hypoxia-inducible factor-1α (Hif1α) is a master tran-
scriptional regulator of the cellular and systemic hypoxia
response, and is essential for the maintenance of self-
renewal capacity of normal HSCs and LSC of acute myeloid
leukemia [44]. HIF1α also plays a crucial role in survival
maintenance of LSCs of CML. Deletion of Hif1α impairs
the propagation of CML through impairing cell-cycle pro-
gression and inducing apoptosis of LSCs. Deletion of Hif1α
results in elevated expression of p16 (Ink4a) and p19 (Arf)
in LSCs, and knockdown of p16 (Ink4a) and p19 (Arf) res-
cues the defective colony-forming ability of Hif1α−/− LSCs.
Compared with normal HSCs, LSCs appear to be more
dependent on the HIF1α pathway [45].

Other genes
The tumor suppressor gene Pten is also downregulated
by BCR-ABL in LSCs of CML mice. By genetic deletion
or overexpression of Pten, it was shown to function as a
tumor suppressor in LSCs of CML, consistent with the
role of PTEN in LSCs of acute myeloid leukemia and
progenitor cells of T-ALL progenitors. Functional en-
hancement of the PTEN pathway provides a therapeutic
strategy for targeting LSCs [46].
Bcl6 is a known proto-oncogene that is frequently

translocated in diffuse large B cell lymphoma (DLBCL)
[47]. In response to TKI-treatment, BCL6 protein level
was upregulated by 90 folds in BCR-ABL-positive acute
lymphoblastic leukemia cells. BCL6 upregulation upon
TKI-treatment leads to transcriptional inactivation of
P53 pathway and BCL6-deficient leukemia cells fail to
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inactivate P53 and are particularly sensitive to TKI-
treatment. Bcl6−/− leukemia cells are poised to undergo
cellular senescence and fail to initiate leukemia in serial
transplant recipients. A combination of TKI-treatment
and a novel BCL6 peptide inhibitor markedly increased
survival of NOD/SCID mice xenografted with patient-
derived BCR-ABL1 ALL cells [48].
PML functions as a tumor suppressor that controls

fundamental processes such as apoptosis, cellular prolif-
eration and senescence [49,50]. PML was revealed to
have an indispensable role in maintaining LIC quies-
cence. Pml-deficient long-term LSCs become exhausted
with time and are incapable of generating CML in
transplanted animals [51].
PP2A is a phosphatase regulating many cellular func-

tions and is genetically inactivated in many types of can-
cer [52]. PP2A activity is suppressed in blast crisis but
not chronic phase CML cells through inhibition of BCR-
ABL. Restoration of PP2A activity inhibits BCR-ABL ex-
pression and activity, hence impairing wild-type and
T315I BCR-ABL leukemogenesis. In addition, pharmaco-
logic enhancement of PP2A may represent a possible
therapeutic strategy for blast crisis and imatinib-resistant
CML [53].
Summary
Although our current knowledge of the biology and ther-
apy of CML LSCs is still limited, the identification of novel
gene signatures, such as HSC development related genes,
cell metabolism regulators, kinases, cell adhesion mole-
cules and transcription factors (Table 1), provide the new
opportunities for not only monitoring the proliferation of
CML stem cells, but also developing promising anti-stem
cell therapies for curing CML. Future clinical trials for
testing those gene signatures in CML patients will deter-
mine whether novel BCR-ABL kinase inhibitors or other
combinational therapies are effective in killing CML stem
cells and curing the patients.
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