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Introduction
Myeloid-derived suppressor cells (MDSCs) are an imma-
ture and heterogeneous cell population that can inhibit 
T-cell function. In the 1970s, a population of immuno-
suppressive myeloid cells with suppression of T-cell func-
tion in tumor-bearing mice was accidentally discovered 
[1–3]. These cells were called “immature myeloid cells” 
or “myeloid suppressor cells”. Over the next decades, 
various studies have shown their ability to suppress T-cell 
activation and function and their production from imma-
ture bone marrow cells, and the MDSC definition was 
proposed in 2007 [4]. In pathological conditions such as 
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cancer, infection, chronic inflammation, trauma, bone 
marrow transplantation, sepsis, and autoimmune dis-
eases, the numbers of MDSCs are massively amplified 
and aggregated to the lesions, where they are involved 
in immune escape, immune tolerance, inflammatory 
response, and other processes [5]. Recent studies have 
found that MDSCs are involved in pregnancy and neona-
tal biological effects and have been noted in COVID-19 
patients [6–9].

The development of hematological malignancies 
depends on the evolution of cancer cells and the eco-
system in which they grow, and the immune microen-
vironment has become an area of intense research. As a 
component of the tumor immune microenvironment, 
MDSCs and their related factors and functions, such as 
reactive oxygen species (ROS), indoleamine 2,3-dioxy-
genase (IDO), arginase 1 (ARG1), adenosine, and nega-
tive immune checkpoints, can remodel the suppressive 
immune microenvironment of tumors [10]. MDSCs may 
exert inhibitory effects on immune responses by modu-
lating the function of NK cells and CD4+ and CD8+ T 
cells, leading to an imbalance in the immune system and 
immune editing of tumors into an immune escape phase 
[10]. However, this also makes MDSCs a potential target 
with far-reaching therapeutic treatments to overcome 
the immunosuppressive microenvironment of tumors. In 
recent years, progress has been made with several explor-
atory therapies that target MDSCs for the treatment of 
hematological malignancies. However, many questions 
regarding the mechanisms of MDSC activation, differen-
tiation, and function remain unanswered. In this review, 
we summarize existing findings on the role and function 
of MDSCs in various hematological tumors and discuss 
treatments targeting MDSCs to provide ideas for future 
research and therapies.

Phenotypic characteristics and functions of MDSCs
The varied population of myeloid cells originating from 
hematopoietic stem cells (HSCs) is composed primarily 
of monocytes and granulocytes. Monocytes convert into 
macrophages (MΦs) and dendritic cells (DCs) in tissues, 
where they help maintain homeostasis and respond to 
inflammatory conditions, while granulocytes terminally 
differentiate into polymorphonuclear neutrophils, baso-
phils, and eosinophils [11]. In healthy individuals, patho-
gen-associated molecular patterns (PAMPs) released by 
various pathogens, and damage-associated molecular 
patterns (DAMPs) usually released by damaged tissues or 
cells, that act as danger signals, which drive myeloid cells 
to differentiate into the above mentioned mature cells, 
triggering innate and adaptive immune responses [7]. At 
this time, in the process of defending against pathogens, 
the defense by myeloid and lymphoid reactions needs 
to maintain a balance (Fig.  1) [6]. In contrast, under 

certain pathological conditions, particularly cancer and 
chronic inflammation, persistent aberrant signals stimu-
late myelopoiesis, which allows immature myeloid cells 
to stagnate during differentiation and acquire immuno-
suppressive properties. These cells are known as MDSCs 
(Fig. 1) [7].

Based on their origin and characteristics, murine and 
human MDSCs are subdivided into two major sub-
groups: monocytic MDSCs (M-MDSCs) and poly-
morphonuclear/granulocytic MDSCs (PMN-MDSCs, 
also known as G-MDSCs) [8]. In most cases, PMN-
MDSCs account for more than 70% of all MDSCs, while 
M-MDSCs account for less than 30% [11, 12]. A third 
small subgroup of MDSCs present in tumors has been 
reported to be effective in suppressing T cells in vivo 
and in vitro, significantly promoting tumor growth and 
metastasis [9, 13, 14]. These cells are called early MDSCs 
(e-MDSCs). Furthermore, studies in umbilical cord blood 
(UCB) or metastatic pediatric patients with sarcoma in 
the peripheral blood have identified another MDSC sub-
group, named fibrocytic MDSCs (F-MDSCs) [15, 16]. A 
subset of myeloid precursor cells with the MDSC phe-
notype but no immune function, designated MDSC-like 
cells (MDSC-LCs), are detectable in the early phases 
of tumor progression [17]. According to current pub-
lications, precursor cells that differentiate into PMN-
MDSCs can also emanate from the monocyte lineage and 
are termed monocyte-like precursors of granulocytes 
(MLPGs) [18]. The proliferation of MLPG is regulated 
by the downregulation of the retinoblastoma gene (Rb1). 
The most notable characteristic of MDSCs is that they 
are present in extremely low numbers in the peripheral 
blood of healthy people but are significantly increased in 
an inflammatory or infectious or neoplastic state. PMN-
MDSCs are morphologically and phenotypically similar 
to neutrophils, whereas M-MDSCs resemble monocytes, 
which is consistent with the origin of these cells [17, 19]. 
In recent years, many studies have found that PMN-
MDSCs have different gene profiles from neutrophils 
[20, 21], and proteome profiling studies of MDSCs have 
determined that these cells constitute a myeloid cell pop-
ulation with unique characteristics and protein functions 
[22, 23]. Human PMN-MDSCs have the morphology of 
immature to mature polymorphic nuclei neutrophils [13, 
24, 25]. In vitro studies with mature neutrophils con-
firmed their ability to transform into cells with immu-
nosuppressive functions under specific conditions [26, 
27]. With decreased HIF-1 and reduced STAT3 activ-
ity in the hypoxic tumor microenvironment (TME), 
M-MDSCs acquire the phenotype of tumor-associated 
macrophages (TAMs) [28, 29]. According to a recent 
study, M-MDSCs in tumor-bearing mice can transi-
tion into PMN-MDSCs [30]. This phenotypic altera-
tion was triggered by transcriptional silencing of Rb1 
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through epigenetic modifications by histone deacetylase 
2 (HDAC-2) [30]. Interestingly, not only can MDSCs con-
tinue to further differentiate into DCs, MΦs, and TAMs 
[28–31], but factors or pathways that mediate MDSC 
recruitment can also cause mature myeloid cells to dif-
ferentiate into MDSCs. For instance, CD14 + monocytes 
are able to develop into M-MDSCs via interleukin (IL)-
10 and PGE2 in the TME [32, 33], and neutrophils can 

transform into PMN-MDSCs expressing LOX-1 through 
endoplasmic reticulum (ER) stress [20]. The notion that 
MDSCs are the origin of pathologically activated neutro-
phils and monocytes is supported by these studies, and 
these MDSCs have unique genomic, proteomic, and met-
abolic characteristics [8]. There is still controversy about 
whether MDSCs are also the pathological state of mature 
myeloid cells [34].

Fig. 1  Stages of MDSC differentiation and accumulation. Hematopoietic stem cells (HSCs) differentiate in bone marrow into common myeloid 
progenitors (CMPs), which can further differentiate through the hematopoietic system. Under physiological conditions, CMPs can differentiate into neu-
trophils or monocytes and subsequently into MΦs or DCs. However, under pathologic conditions, immature myeloid cells (IMCs) are expanded and con-
verted to immunosuppressive MDSCs, which include monocytic myeloid-derived suppressor cells (M-MDSCs) and polymorphonuclear myeloid-derived 
suppressor cells (PMN-MDSCs). In tumors, M-MDSCs can further differentiate into tumor-associated macrophages (TAMs) (M1 and M2 phenotypes). 
Different cytokines are involved in the whole differentiation process. Growth factors such as SCF, G-CSF, GM-CSF, and M-CSF regulate myelopoiesis pro-
gression, inducing the expansion of MDSCs. In the presence of proinflammatory cytokines such as IFN-γ, IL-4, IL-6, IL-1β, and CXCL1, IMCs are pathologi-
cally activated and then differentiate into M-MDSCs and PMN-MDSCs. Hypoxia in the TME facilitates the expression of hypoxia-inducible factor 1-alpha 
(HIF-1α), which leads to MDSC recruitment and accumulation. TME, tumor microenvironment

 



Page 4 of 20Wang et al. Biomarker Research           (2023) 11:34 

Mouse cells that coexpress the myeloid anti-
gens GR-1 and CD11b (GR-1+CD11b+) are referred 
to as MDSCs [35]. Different levels of Ly6G and 
Ly6C expression and two subtypes of the granu-
locyte marker Gr-l permit further classification of 
MDSCs as PMN-MDSC (CD11b+LY6G+LY6Clow) 
and M-MDSC (CD11b+LY6G−LY6Chigh) subtypes 
[36]. However, human leukocytes do not express 
Gr-1. In human peripheral blood mononuclear 
cells (PBMCs), M-MDSCs and G-MDSCs express 
the CD11b+CD14+CD15−CD33+HLA-DRlow/− and 
CD11b+CD14−CD15+HLA-DRlowCD66b+ designations, 
respectively [17]. The MDSC subgroup can also be recog-
nized by other phenotypic molecules, such as CD84 and 
junctional adhesion molecule-like protein (JAML) [8, 37]. 
However, the CD11b+CD14+CD15−CD33+HLA-DRlow/− 
phenotype of M-MDSCs and the 
CD11b+CD14−CD15+HLA-DRlowCD66b+ phenotype of 
G-MDSCs are also monocyte and granulocyte pheno-
types, respectively. In human, although PMN-MDSCs 
appear in the low-density interphase (1.077  g/ml) after 
density gradient centrifugation, whereas neutrophils 
appear in the high-density interphase (1.1–1.2  g/ml), 
both gradient components can pass through a gradient 
contaminated with the other [17]. Conversely, due to the 
expression of MHC class II molecules, which are only 
expressed on monocytes (HLA-DR+), human M-MDSCs 
may be easily identified from monocytes [14]. In mice, 
Ly6G and Ly6C expression by myeloid cells appears to 
be variable based on inflammatory stimuli. Jia, et al. 
found that CD48 can distinguish between PMN-MDSCs 
and M-MDSCs in a CD11b+Ly6GlowLy6Chigh cell sepsis 
model with phenotypes of both [38]. Determining the 
cell-surface markers and gating strategies that specifi-
cally identify the various populations of MDSCs is a core 
focus of continued studies. Since the MDSC phenotype 
is not exclusive, it is inappropriate to define MDSCs 
solely by concentrating on immune cell markers. Iden-
tifying MDSCs also requires determining whether they 
have immunosuppressive properties. The phenotypic and 
immunosuppressive features of MDSCs in hematological 
malignancies are shown in Table 1.

A core problem in the field of MDSC research is how 
their amplification, accumulation, and activation pro-
ceed. Condamine et al. initially developed the hypothesis 
of a “two phases model”, which classifies the various cyto-
kines and signaling pathways that have been discovered to 
be involved in the development and activation of MDSCs 
into two distinct functional types [39]. The first group of 
signals mediates the MDSC amplification process and 
loss of their developmental potential. The second set of 
signals mediates the activation of MDSCs and acquisi-
tion of immunosuppressive function. The first group 
of signals is mainly propelled by various growth factors 

produced by tumor-derived and BM-derived growth fac-
tors in response to chronic stimulation. These include 
stem cell factor (SCF), granulocyte colony–stimulating 
factor (G-CSF), granulocyte-macrophage colony–stimu-
lating factor (GM-CSF), macrophage colony–stimulating 
factor (M-CSF), and vascular endothelial growth factor 
(VEGF) [40–43]. This process is also mediated by sig-
nal transducer and activator of transcription 3 (STAT3), 
interferon regulatory factor 8 (IRF8), transcription fac-
tor CCAAT enhancer binding protein β (C/EBP β), Rb1, 
NOTCH, adenosine receptor A2B, and NOD-like recep-
tor family protein 3 (NLRP3) [44]. The second group of 
signals is proinflammatory cytokines mainly produced 
by tumor stromal cells, such as IFN-γ, IL-4, IL-6, IL-1β, 
and CXCL1 [45], which are responsible for inducing the 
suppressive activity of MDSCs via NF-κB, PI3K-AKT, 
STAT1, and STAT6 [7, 45]. These signals can induce 
MDSCs to express inhibitory molecules such ARG-1, 
iNOS, NOX-2, COX-2, TGF-β, and IL-10 [7]. MDSCs 
need to undergo myelopoiesis in the BM and lymphatic 
organs, mobilize to the periphery, and then develop 
and exercise their immune properties in the TME. The 
two-phase model is centered on the biological activity 
of MDSCs. Nevertheless, a recent article highlights the 
migratory properties of MDSCs, proposing an increase in 
MDSC homing to form four-step events (steps I-IV) on a 
two-step basis [12]. Chemokines can mediate the migra-
tion of immune cells into the TME [46]. The immuno-
logical maintenance functions of MDSCs are coordinated 
by a variety of crucial chemokines, including CCR2 and 
CCR5 [47, 48]. Additionally, the recruitment and acti-
vation of MDSCs is also regulated by miRNAs and exo-
somes in the TME [49]. The MDSC amplification and 
activation of these models overlap, which is exceedingly 
complicated and involves a number of variables [7]. The 
immunosuppressive mechanisms of MDSCs are shown 
in Fig. 2.

The function of MDSCs in hematologic 
malignancies
The transition of the TME to an inhibitory area is facil-
itated by MDSCs. Understanding how MDSCs are 
expressed in diverse hematological malignancies and 
their role in clinical prognosis can help inspire new con-
cepts and ideas for future targeted treatments.

Lymphoma
Lymphoma is a malignant tumor originating from lym-
phoid tissues and lymph nodes and is characterized by 
abnormal proliferation of B cells and T cells. It is mainly 
divided into Hodgkin and non-Hodgkin lymphomas [50]. 
The properties of lymphomas and solid tumors are more 
similar to those of other hematological malignancies. Sev-
eral studies have proven the clinical correlation between 
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MDSCs and most lymphoma subtypes [51–57]. Accord-
ing to a data analysis by Wang et al., patients with newly 
diagnosed and relapsed diffuse large B-cell lymphoma 
(DLBCL) had considerably higher levels of M-MDSCs 
in their peripheral blood, and the levels of M-MDSCs in 
newly diagnosed DLBCL patients were negatively cor-
related with overall survival (OS), positively correlated 
with tumor progression, and correlated with the Interna-
tional Prognostic Index (IPI) score [58]. It was discovered 
that only M-MDSCs (CD14+HLA-DRlow) are associated 
with event-free survival and regulatory T-cell (Treg) 
number in DLBCL in the study of Imheane Azzaoui et 
al. [55]. Patients with relapsed/refractory (R/R) DLBCL 

had higher concentrations of MDSCs and Tregs than the 
healthy group, and reduced levels of Tregs and MDSCs 
correlated with a better OS [59]. M-MDSCs are more 
numerous in DLBCL, and G-MDSCs are even considered 
nonfunctional [58]. It was discovered that IL-35 could 
lead to the accumulation of CD11b+Gr1+ myeloid cells 
and that using a neutralizing antibody to remove IL-35 
directly from mouse experiments could help lessen the 
buildup of M-MDSCs in mice with Ly8 DLBCL tumors 
[58]. However, the precise mechanism is still unknown. 
Since the majority of blood biomarkers in DLBCL are 
linked to the tumor microenvironment, specifically to 
myeloid cell biology, further identification of the MDSC 

Fig. 2  Immunosuppressive mechanisms and targets of MDSCs. MDSCs inhibit T-cell activity through distinct mechanisms, including loss of the TCR 
ζ-chain; nitration of the TCR complex; depletion of amino acids necessary for the T-cell response; the production of adenosine, high levels of NO, RNS, 
Arg1, and chemokines; the presence of immune checkpoint blockade; and impairment of T-cell homing. Moreover, MDSCs promote Treg and macro-
phage differentiation and increase FOXP3 expression. Additionally, MDSCs suppress NK cells and CD8+ T cells. Finally, tumor-infiltrating MDSCs promote 
the migration of tumor cells by interacting with cancer stem cells (CSCs).
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subgroups is crucial [55]. However, Marini et al. reported 
that the frequency of CD66b+CD33dimHLA-DR− PMN- 
MDSCs in 124 patients with B-cell lymphomas (including 
CHL and NHL) was higher than that in the healthy con-
trol group, and the depletion of CD66b+ cells in PBMCs 
of patients restored the proliferation of autologous T cells 
in vitro [60]. More research is necessary to determine 
why M-MDSCs are prominent only in DLBCL.

The expansion of MDSCs is closely related to the dis-
ease progression of lymphoma and has an indicative 
role in the prognosis of lymphoma patients [51, 58]. 
Immature CD34+ MDSCs are considered a new poten-
tial prognostic marker in CHL patients. In PB samples 
from 60 newly diagnosed HL patients, all three MDSC 
subtypes, including CD34+, were increased. The MDSC 
counts were lower in patients who achieved a complete 
response (CR) after chemotherapy than in patients who 
did not respond [53]. Additionally, studies have discov-
ered that elevated PMN-MDSCs (CD11b+CD15+CD33int) 
in the duodenum dampen the development of enterop-
athy-associated T-cell lymphoma (EATL) by promoting 
antitumor T-cell immunity [61]. According to a study of 
32 patients with the disease, the percentage of circulat-
ing HLA-DR−/CD33+/CD11b+ MDSCs was higher in 
extranodal NK/T-cell lymphoma (ENKL) patients than 
in healthy controls, and they were an independent pre-
dictor of disease-free survival (DFS) and overall survival 
(OS) [62]. In addition, ENKL-MDSCs exhibited high lev-
els of ARG1, iNOS, and IL-17; moderate levels of TGF-β 
and IL-10; and low levels of CD66b. These characteristics 
greatly inhibited the proliferation of anti-CD3-induced 
CD4+ T cells but only weakly inhibited the proliferation 
of CD8+ T cells.

In a study of mice with RMA-S lymphoma, Shlecker et 
al. demonstrated that populations of PMN-MDSCs and 
M-MDSCs were present in high numbers in the periph-
eral blood, spleen, and tumor tissues of tumor-bearing 
mice [63]. Research on tumor-bearing adiponectin 
knockout (APNKO) mice shows that adiponectin is an 
important regulator of EL4 lymphoma-carrying mouse 
MDSC amplification, in which G-CSF plays an important 
role in MDSC differentiation [64]. MicroRNA (miR)-30a 
increased microRNA expression in both PMN-MDSCs 
and M-MDSCs in B-cell lymphoma model mice [65]. 
After transfection with miR-30a mimics, the differ-
entiation and capacities of MDSCs were significantly 
increased via upregulation of ARG-1. Decreased SOCS3 
expression and activation of Janus kinase-signal trans-
ducer and activator of transcription 3 signaling promote 
MDSC differentiation and activity. The factors IL-13, 
IL-10, and S100A12 and increased PD-L1 expression 
are all implicated in the suppression of bone marrow-
dependent T cells in DLBCL [59]. However, ARG1 and 
IDO1 associated with MDSC amplification do not play 

a regulatory role in DLBCL [58]. This lack of regulatory 
inhibition has not been explained and verified. Among 
solid tumors [66] or in subcutaneous lymphoma models 
[67], MDSCs can exert their inhibitory effect on tumor-
specific T-cell responses mediated by TGF-β [68], argi-
nine [69], and/or nitric oxide [70]. Using the A20 B-cell 
lymphoma model to negate the dominant role of TGF-β 
on Treg amplification, MDSCs can inhibit the effect of 
T-cell function by MDSCs through arginine metabolism 
[71]. However, sildenafil treatment resulted in decreased 
IL4R levels, reduced Treg amplification, and restored 
tumor-inducing T-cell function.

MDSCs and effector Th17 cells are involved in 
immune dysregulation during the development of gas-
tric mucosa-associated lymphoid tissue (MALT) lym-
phoma and are accompanied by increased expression of 
ARG1, iNOS, IL-23, IL-1β, and the chemokine CCL20/
CCR6 [72]. However, in non-Hodgkin lymphoma 
(NHL), MDSCs act on NK cells through the immuno-
suppressive effect of IL-10 but not on T cells. Moreover, 
CD27+CD11b+ NK cells negatively regulate the expan-
sion of Gr1+CD11b+Ly6GmedLy6Cmed MDSCs and MDSC 
expression of MHC class II, CD80, CD124 and CCR2 
in the EL4 mouse lymphoma model [73]. In addition to 
PD-L1, other immune checkpoints, such as TIGIT and 
c-Rel, have also been verified to have tumor-promoting 
effects on MDSCs in lymphoma, which may become an 
immunotherapeutic strategy targeting MDSCs [74, 75]. It 
can be hypothesized that MDSCs have important clini-
cal significance for lymphoma patients. However, due to 
the high heterogeneity of lymphomas and MDSCs, the 
pathological mechanism and role of target MDSCs in 
lymphoma have become complex, and more in-depth 
research is still needed.

Leukemia
Leukemia is a malignant clonal disease of hematopoi-
etic stem and progenitor cells. Liu et al. confirmed that 
the PMN-MDSC population in the peripheral blood and 
BM of children with B-ALL was significantly increased, 
and the level of PMN-MDSCs was positively correlated 
with the therapeutic response and the prognosis markers 
of B-ALL disease, including minimal residual disease and 
the frequency of CD20 + and primitive cells [76]. During 
induction treatment, patients with B-ALL showed higher 
MDSC and Treg cell levels than those with an early diag-
nosis of the condition [76]. The levels of MDSCs and 
Tregs in different stages of leukemia vary, and some 
researchers have proposed that MDSCs and Tregs are 
independent predictors of B-ALL progression [77]. 
Using Affymetrix microarray technology, Labib’s group 
found that miRNAs specifically induced the recruit-
ment of MDSCs and Tregs, and these miRNAs could be 
potential biomarkers as they affected the progression of 
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B-ALL [78]. This view was also verified in DLBCL [79]. 
Recently, Grazioli et al. demonstrated MDSC amplifica-
tion through the Notch pathway by establishing a T-ALL 
transgenic mouse model of Notch3 [80].

In a study including 49 CLL patients, Liu et al. 
found that all CLL patients had markedly increased 
CD14+HLA-DRlow/− MDSCs, which lessen the CD4+ 
T-cell immunological response and promote CLL cell 
development [81]. In addition, the level of M-MDSCs in 
CLL was basically related to the frequency of the deletion 
of the prognostic markers CD38, ZAP70, 11q22.3 and/or 
17p13.1 [82, 83]. The ratio of PMN-MDSCs to M-MDSCs 
has an impact on CLL development. The given explana-
tion is that M-MDSCs mediate the immune suppression 
function of T cells by TNF-α [84]. Through the con-
struction of the CLL E-TCL1 mouse model, it was found 
that IDO1 and secretory IgM promote the expansion of 
MDSCs, but the inhibition of IDO1 could not reduce the 
recurrence of leukemia [85, 86]. Patients with AML and 
CML are reported to have elevated numbers of MDSCs 
in the bone marrow, and these levels diminished after 
treatment [87, 88]. The progression of tumors relies on 
elevated MDSC levels in Sokal high-risk patients, along 
with elevated soluble CD25, arginase 1, and PD-L1 
expression [89]. The levels of MDSCs in the high minimal 
residual disease (MRD) group were significantly higher 
than those in the middle/low MRD groups in 123 AML 
patients [87]. The expression of MDSCs also plays a prog-
nostic role in myeloid leukemia.

Extracellular vesicles (EV) are important vectors for 
MDSC amplification in AML and CML [90, 91]. It was 
proven that MUC1 oncoprotein-driven c-MYC expres-
sion in EVs in AML resulted in downstream MDSC pro-
liferation using the TIB-49 AML-transplanted C57BL/6 
mouse model [91]. Additionally, the CD14+HLA-DRlow 
phenotype and functional modification of monocytes 
produced by AML-EVs are significantly influenced by the 
Akt/mTOR pathway. The activation of Toll-like recep-
tor 2 by palmitoyl protein on the surface of AML-EVs 
supports EVs as the initial event in the AKT/mTOR-
dependent induction of MDSCs [92]. Another nega-
tive regulator of cancer immune evasion is V-domain 
Ig inhibitor of T-cell activation (VISTA). According to 
Wang’s research, MDSCs were shown to be increased 
in the peripheral blood of AML patients, and VISTA 
knockdown significantly decreased the ability of these 
cells to inhibit PD-1-expressing CD8+ T cells in AML 
[93]. Recently, it was found that the expression of GPX1 
in AML was positively correlated with MDSC, monocyte 
and T-cell depletion scores, and interestingly, it was also 
associated with immunosuppression checkpoints (TIM3/
GAL-9, SIRPα, and VISTA), and these checkpoints par-
ticipate in the immunosuppressive effects of MDSCs 

[94]. These potential pathways and targets of mechanis-
tic research provide theoretical support for immune drug 
application.

Multiple myeloma
Multiple myeloma (MM) is a clone of malignant plasma 
cells in the bone marrow with extramedullary infiltra-
tion. Similar to other tumors, the number of MDSCs is 
increased in MM [95]. This is accompanied by higher 
ARG-1, iNOS, ROS, TNF-α, and IL-10 levels [96–98]. 
According to previous studies, M-MDSC levels have a 
negative correlation with therapeutic response and a 
positive correlation with MM recurrence [95]. PMN-
MDSCs are found in higher numbers in the BM and PB 
of MM patients, and research has related them to the 
progression and treatment resistance of MM [99, 100]. 
In MM cells, G-MDSCs enhanced the side population, 
sphere formation, and expression of cancer stem cells 
(CSCs) core genes [101]. Furthermore, G-MDSCs induce 
piRNA-823 expression, promote DNA methylation and 
heighten tumorigenic potential [101]. The secretion of 
C-C motif chemokine ligand 5 (CCL5) and macrophage 
migration inhibitory factor (MIF) by myeloma cells is a 
prerequisite for inducing MDSCs in MM [102]. Recent 
studies have suggested that the (CD11b/CD13/CD16) 
PMN-MDSC phenotype can be used to accurately moni-
tor MM and its clinical transformation [103]. In addi-
tion to promoting the growth of MM cells by secreting 
inhibitory factors, MDSCs can also partly promote tumor 
growth through AMPK activation [104]. In addition, 
mesenchymal stem cells promote MDSCs by inhibiting 
T-cell proliferation and IFN-γ production to enhance the 
immunosuppressive effect of MDSCs [105]. MDSC sub-
types have different functions in MM. PMN-MDSCs can 
secrete angiogenesis-related factors to promote angio-
genesis, while M-MDSCs can be osteoclast precursors 
and participate in the pathological mechanism of osteo-
lytic bone destruction [106].

Myelodysplastic syndrome
Myelodysplastic syndrome (MDS) is a heterogeneous 
clonal disease of hematopoietic myeloid directed stem 
cells or pluripotent stem cells. It is characterized by inef-
fective hematopoiesis, morbid hematopoiesis, and con-
version to AML. Elevated MDSC levels play a central role 
in the pathogenesis of MDS and dysregulation of immune 
surveillance and are connected with the risk of MDS pro-
gression to AML and a poor prognosis [107, 108]. It has 
been demonstrated that in MDS patients, the popula-
tion of MDSCs in peripheral blood is significantly lower 
in very low/low-risk patients than in medium/high/very 
high-risk patients [108]. In both high-risk and non-low-
risk patients, there is a positive relationship between 
the proportion of Tregs and MDSCs. The data further 
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showed that tumor-derived MDSCs expressed CXCR4 
and CX3CR1, which facilitate the migration of MDSCs 
to the bone marrow. It is worth noting that M-MDSCs 
in peripheral blood more often express CX3CR1 and 
CXCR4 at higher levels than PMN-MDSCs. Further stud-
ies showed that the ratios of IL-10/IL-12 and TGF-β/
TNF-α in high-risk MDS patients were significantly 
higher than those in low-risk MDS patients and normal 
controls [109]. The ratio of TGF-β/TNF-α in MDSCs 
was positively correlated with the percentage of primi-
tive cells and negatively correlated with the percentage 
of CD3+CD8+ T-lymphocytes. MDSCs in high-risk MDS 
have a stronger immunosuppressive effect, which may be 
related to a poor prognosis.

The equilibrium of MDSC immunity in MDS was 
examined utilizing the ratios of IL-10/IL-12 and TGF-β/
TNF-α. In high-risk MDS patients, MDSCs show high 
levels of active STAT3 and CCR2, and the STAT3-
ARG1 pathway may be the significant signaling pathway 
regulating MDSC-mediated CD8+ T-cell immunosup-
pression [110]. In addition to the immune checkpoint 
protein TIM3 ligand Gal-9 [111], another TIM3 ligand, 
CEACAM1MDS, is also increased in the MDSC-medi-
ated CD8+ T-cell failure pathway in MDS [112]. Com-
pared with healthy donors, the expression of PD-1 on 
HSPCs and PD-L1 on MDSCs is higher in MDS, and 
this checkpoint was also found to be activated in S100A9 
transgenic (S100A9Tg) mice [113]. The PD-1/PD-L1-re-
lated effects affect the hematopoietic pathways of MDS, 
and blocking PD-1 or PD-L1 helps reverse the ineffec-
tive hematopoietic environment triggered by MDSCs. 
The accumulation of CD33+HLA-DR−Lin− MDSCs has 
important significance in the pathogenesis of MDS. Eksi-
oglu et al. reported that the interaction of CD33-S100A9 
triggers the inflammatory signaling cascade reaction 
leading to ROS release, which is related to DNA damage 
[113]. In MDS patients, an anti-CD33 monoclonal anti-
body can reduce MDSC levels, thus blocking the down-
stream signal transduction of CD33 and preventing the 
secretion of immunosuppressive cytokines, thereby 
reducing ROS levels and DNA damage.

Myeloproliferative neoplasms
CML, a myeloproliferative tumor, is characterized by 
the employment of the aberrant oncoprotein BCR-ABL. 
Giallongo’s group reported that CML cells encourage 
MDSC multiplication by releasing soluble substances and 
exosomes, producing an immune-tolerant milieu that 
causes T-cell anergy and encourages tumor growth [114]. 
CML is described in the leukemia section above and will 
not be repeated here.

The majority of cases of myeloproliferative neoplasms 
(MPNs), which are clonal myeloid malignancies produced 
from stem cells, result from three mutually exclusive 

mutations (JAK2V617F, MPL, and CALR), which have 
a distinct somatic mutational profile [115]. Recent stud-
ies have shown that MDSCs and PD-L1 are involved in 
the immune escape mechanism of proliferative tumors 
[116, 117]. In contrast to Wang’s work, which showed 
increased PD-1 and PD-L1 expression in MPN, Kundra’s 
study found no increase in the expression of these pro-
teins in MPN. According to additional research, MPN 
was categorized into groups by Wang et al. The levels 
of PD-1 and PD-L1 in CD4+CD8+CD14+CD34+ pro-
genitor cells when PV, ET, and MF were separated into 
MPN were significantly different from those of the con-
trol group. In the study of Kundra et al., MPN was not 
grouped, and the selected cells were CD4+CD8+CD14+ 
MNC cells. In both studies, MDSCs increased and 
exerted immunosuppressive functions. Given that MPN 
represents a stem cell disease, it is envisioned that anti-
MDSC agents in combination with ICIs such as PD-1 and 
PD-L1 in PH (-) MPN may be necessary.

The implications of MDSCs in the treatment of 
hematologic malignancies
Hematological tumor therapy mainly includes chemo-
therapy, targeted therapy, and immunotherapy. As early 
as the beginning of the 21st century, studies have shown 
that all-trans retinoic acid (ATRA) can induce the dif-
ferentiation of immature myeloid cells in tumor patients 
and reduce their immunosuppressive function [118]. A 
growing number of potential drugs have been studied for 
targeting MDSCs [119], most of which are more effective 
in tumor control than existing treatment regimens Fig. 3. 
The treatments aimed at MDSCs are mainly divided into 
four categories: reduction of the number of MDSCs, 
inhibition of MDSC differentiation, inhibition of MDSC 
recruitment, and MDSC inactivation (Table  2). A valu-
able research direction for MDSC-related cell therapy is 
the prevention and treatment of graft-versus-host disease 
after hemopoietic stem cell transplantation (HSCT).

Depleting MDSCs
MDSCs are cells that have a short survival time in the 
blood. Conventional cytotoxic chemotherapy, such as 
5-fluorouracil, gemcitabine, tyrosine kinase inhibitors 
(TKIs), or targeting S100A via a therapeutic peptide Fc 
fusion protein, has been shown to deplete MDSCs in 
solid tumors and to promote antitumor effects [120]. 
5-Fluorouracil and gemcitabine selectively induce the 
apoptosis of MDSCs in mouse models and initiate anti-
tumor effects [121–123]. Additionally, gemcitabine 
combined with DC-mediated immunotherapy mark-
edly enhances the therapeutic effect against lymphoma, 
indicating the potential of combination therapy for 
treating this malignancy [122]. Sasso et al. showed that 
a low-dose encapsulated gemcitabine formulation can 
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selectively target M-MDSC subsets and reduce tumor-
associated immunosuppression in the TME using the 
E.G7-OVA lymphoma model [124]. After TKI treatment 
of CML patients, the proportion of PMN-MDSCs and 
serum ARG1 and iNOS levels decreased significantly, 
with the proportion of effector NK cells increasing [125]. 
However, the treatment of CML with the TKI dasatinib 
resulted in a significant decrease in M-MDSCs [126]. 
Peptide-Fc fusion (peptide bodies) can specifically reduce 

the number of MDSCs in the blood, spleen, and tumor 
to reduce immune suppression without affecting the type 
of proinflammatory immune cells, which was also veri-
fied in different mouse lymphoma models (A20, EG7, and 
EL4) [127].

A more elaborate approach uses the antibody CD33. 
The humanized Fc-engineered CD33 monoclonal anti-
body (BI 836,858) reduces MDSCs through antibody-
dependent cytotoxicity and blocks the secretion of 

Table 2  Summary of clinical trials targeting MDSCs in hematological malignancy
NCT number Drug name Target Indications Last reported status Phase
NCT01393106 Idelalisib PI3K Hodgkin lymphoma Completed II

NCT01374217 Tadalafil, Lenalidomide, Dexamethasone PDE5 MM Recruiting II

NCT02916979 Fludarabine, Busulfan / Leukemia, MDS Active, not recruiting I

NCT03480360 Cyclophosphamide, Fludarabine / Leukemia Recruiting III

NCT01563302 IONIS-STAT3Rx STAT3 DLBCL lymphoma Completed I/II

NCT03214666 GTB-3550 TriKE™ CD33 Leukemia Recruiting I/II

NCT02076451 DS-8273a TRAIL-R2 Lymphoma Completed I

NCT04405167 Tasquinimod, IRd chemotherapy S100A9 MM Recruiting I

NCT04915248 Daratumumab, Bortezomib, Dexamethasone CD38 Plasmablastic Lymphoma Recruiting II

NCT02846376 Nivolumab, Ipilimumab CTLA-4, PD-1 AML, MDS Active, not recruiting I

NCT04147533 Dasatinib, Nilotinib BCR-ABL CML Recruiting II

NCT05032820 Lenalidomide, bb2121 / MM Recruiting II

NCT01675141 Lenalidomide / MM Completed II

NCT05293912 SG2501 CD38 Hematological Malignancy Recruiting I

NCT02936752 Entinostat HDAC MDS Active, not recruiting I

NCT02922764 RGX-104, Nivolumab, Ipilimumab LXR advanced solid tumors, lymphoma Recruiting I

NCT01347996 histamine dihydrochloride, IL-2 NOX2 AML Completed IV

NCT03144245 AMV564 CD33 AML Completed I

NCT03516591 AMV564 CD33 MDS Completed I

Fig. 3  Therapeutic agents against MDSCs classified by mechanism in hematological malignancy. The main approaches to target MDSCs include 
[1] depleting MDSCs; [2] blocking MDSC recruitment to the tumor microenvironment (TME); [3] promoting the differentiation of MDSCs into mature 
myeloid cells; [4] blocking MDSC-mediated immunosuppression
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immunosuppressive cytokines [128]. Reactive oxygen 
species (ROS) can lead to genomic instability when the 
CD33 signaling pathway is activated, whereas BI 836,858 
decreases the levels of double strand breaks and adducts 
in addition to ROS [128]. Further research found that 
treatment with this monoclonal antibody mainly removes 
the MDSC wall in the tumor environment, leaving ben-
eficial immune cells relatively unaffected, which has 
shown satisfactory results in subsequent clinical trials 
[129]. CD33 is specifically overexpressed in AML cells 
but not in hematopoietic stem cells or mature granulo-
cytes, making CD33 a potential therapeutic target. Fol-
lowing the dose adjustment of gemtuzumab ozogamicin 
(GO), a humanized anti-CD33 monoclonal antibody, 
there was renewed interest in CD33 targeted therapy 
[128]. The drug AMV564 is a CD33/CD3 dual-specific 
T-cell activator. At present, clinical studies are being 
conducted on patients with advanced solid AML, MDS, 
or malignant tumors (NCT03144245, NCT03516591, 
and NCT04128423) [130]. At a tolerable dose, AMV564 
leads to a decrease in MDSCs, an increase in cytotoxic 
cell activation, and a decrease in tumor burden. When 
AMV564 is used as a single drug or in combination 
with immunotherapy targeting checkpoints, continu-
ing clinical evaluation of the drugs is encouraged due to 
the reduction in CD33high MDSCs and improvement in 
cytotoxic T-cell activation in malignant tumors [130]. In 
addition to CD33-targeted biotherapeutics (CD3+CD33+ 
or CD16+CD33+) [130, 131], CD123-targeted antibod-
ies and BiABs have high binding affinity for targets on 
MDS clones and MDSCs, which also shows their clinical 
potential for treating high-risk MDS patients [132].

Liver X receptors (LXR and isoforms) modulate choles-
terol homeostasis, which has an impact on the survival 
and proliferation of leukemia cells [133]. The LXRβ ago-
nist RGX-104 abolishes tumors by reducing the number 
of bone marrow-derived suppressor cells and increas-
ing the number of antigen-specific T cells [134]. Pre-
liminary results from an ongoing phase I clinical trial 
(NTC02922764) show that RGX-104 causes a decrease in 
MDSCs in patients with metastatic solid cancer or lym-
phoma, accompanied by cytotoxic T lymphocyte (CTL) 
activation.

Promotion of MDSC differentiation
Vitamin A and vitamin D3 trigger the differentia-
tion of MDSCs [135, 136]. The first acute promyelo-
cytic leukemia (APL) medication, all-trans retinoic acid 
(ATRA), eliminates PMN-MDSCs while stimulating 
MDSC development into macrophages and dendritic 
cells. In patients with APL, tumor-activated group 2 
innate lymphoid cells (ILC2s) secrete IL-13 to induce 
M-MDSCs (CD33+CD14+HLA-DR−) and support tumor 
growth, while ATRA treatment reverses the increase in 

ILC2-MDSCs in APL [137]. Recently, lipid nanoformula-
tions have been used as carriers of ATRA, improving the 
bioavailability of ATRA and the tumor treatment effi-
ciency [138]. A selective inhibitor of JAK2/STAT3 signal-
ing, cucurbitacin B (CuB), promotes the differentiation of 
MDSCs into DCs [139]. Although the STAT3 antisense 
oligonucleotide AZD9150 causes a decrease in MDSCs 
and an increase in DCs, whether this targeting drug 
causes MDSC differentiation needs to be verified experi-
mentally [140]. JAK2/STAT3 signaling is a potential path-
way for MDSC-targeted therapy. Adjuvant epigenetic 
therapy for solid tumors not only inhibits the movement 
of MDSCs into tissue but also destroys the premetastatic 
niche by promoting the differentiation of MDSCs into a 
more interstitial macrophage-like phenotype [141]. How-
ever, the mechanism of differentiation in hematological 
tumors needs to be verified. In addition, nitrogen-con-
taining bisphosphonates (N-bisphosphonates), such as 
zoledronic acid, have the ability to promote the differen-
tiation of MDSCs into mature cells in murine models of 
solid tumors, independent of their ability to inhibit phen-
ylpropylation [142]. N-Bisphosphonates play a major 
role in the supportive treatment of MM patients, but 
the effect of this drug on MDSCs in MM remains to be 
explored.

Blocking MDSC recruitment
PI3K inhibitors have recently been shown to reduce 
tumor and spleen MDSCs in a mouse model [143]. The 
inhibitors duvelisib and ibrutinib are in phase II clini-
cal trials for the treatment of lymphocytic leukemia 
(NCT04209621), and the PI3K inhibitor idelalisib is 
being tested in a Hodgkin’s lymphoma phase II clinical 
trial (NCT01393106). In several cancer types, STAT3 
is a key transcription factor for MDSC amplification 
and upregulates arginase 1, S100A8, and S100A9 [144]. 
There is an ongoing clinical trial of the STAT3 inhibitor 
IONIS-STAT3RX for the treatment of DLBCL lymphoma 
(NCT01563302) [7]. Tasquinimod (TASQ) is an inves-
tigational drug targeting MDSCs through the S100A9 
protein. A recent phase 1 trial (NCT04405167) to deter-
mine the maximum tolerated dose (MTD) and optimal 
treatment dose of TASQ in MM patients investigated the 
MTD of TASQ in combination with standard regimens 
of ixazomib, lenalidomide, and dexamethasone (IRd) in 
oral myeloma. In a study of the small molecule S100A8 
inhibitor ABR-238,901 combined with bortezomib in 
the treatment of MM, the use of the immune mouse 
5T33MM model proved that the treatment did not 
directly affect the accumulation of MDSCs but decreased 
the expression of the cytokines IL-6 and IL-10 in MDSCs 
with a reduction in tumor load [145].
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Blocking MDSC-mediated immunosuppression
MDSCs upregulate the expressions of ROS, iNOS, ARG-
1, and other immunosuppressive factors and decrease 
the antitumor activity of T cells. Therefore, these fac-
tors have become important therapeutic targets. Acti-
vated MDSCs express significant amounts of ARG-1 and 
NOS2, and inhibitors of both enzymes (L-NMMA for 
NOS2 and norNOHA for ARG-1) reversed the MDSC 
immunosuppression mechanism in MM and lymphoma 
models [96, 98, 146]. Noonan et al. demonstrated that 
tadalafil, a phosphodiesterase 5 (PDE5) inhibitor, reduces 
the expression of ROS, ARG-1, and iNOS in the MDSCs 
of patients with advanced relapsed/refractory MM and 
restores the antitumor immune response of T cells after 
treatment [147]. Targeting indoleamine 2,3-dioxygen-
ase (IDO1) has therapeutic effects not only on MDSCs 
but also on Tregs [148]. A preclinical treatment study 
with the Eµ-TCL1 mouse model of CLL treated with two 
IDO1 inhibitors, namely, 1-methyl-D-tryptophan (1-MT) 
and epacadostat, found that these two inhibitors had only 
a slight impact on the progression of CLL. The activity of 
aromatic hydrocarbon receptor (AHR) and the expres-
sion of IL4Il may explain why inhibitors of IDO1 slightly 
affect the progression of CLL [86]. The synthetic triterpe-
noid C-28 methyl ester of 2-cyano-3,12-dioxooleana-1,9,-
dien-28-oic acid (CDDO-Me) is an NRF2 activator that 
eliminates the immunosuppression of MDSCs by reduc-
ing the levels of ROS and nitrotyrosine in the EL4 mouse 
tumor model [149–151]. A COX2 inhibitor can reduce 
the amount of e-MDSCs and their immunosuppressive 
function in mesothelioma, but this effect still needs to be 
confirmed in hematological tumors [152]. The TKIs ima-
tinib and dasatinib reduce the levels of MDSCs and ARG-
1, MPO, IL-10, and MDSC inhibitory effects in CML 
and regulate T cells [147, 153]. However, the TKI ibuti-
nib only acts on PMN MDSCs and Th cells in CLL, hin-
dering tumor progression [84]. High concentrations of 
S100A9, IL-10, and TGF-β produced by MDSCs in MDS 
BM matrix-β activate the proto-oncogene MYC. This 
induces PD-L1 in tumors to promote immune escape. 
Bortezomib [154], lenalidomide + anti-PD-1 [155] or 
DCs + lenalidomide + anti-PD-1 [156] all cause a decrease 
in MDSC numbers in MM and an improvement in the 
tumor microenvironment. However, some studies have 
concluded that these proteasome inhibitors and immu-
nomodulators cannot deplete MDSC counts, and their 
clinical efficacy is not attributed to MDSCs [96, 156].

There is still controversy about the actions of these 
drugs on MDSCs and the immune microenvironment 
that needs further research. It is crucial to note that in 
recent years, attention has also been focused on the char-
acteristics of BCMA antigen targeting, CD38 antigen 
targeting, CD123 antigen targeting, and bispecific anti-
bodies (BsAB) in therapeutic strategies and their effect 

on the evolution of multiple myeloma (MM) through 
MDSCs [157]. Epigenetic therapies using low-dose his-
tone deacetylase inhibitors (HDACis) or DNA meth-
yltransferase inhibitors (DNMTis) have been shown to 
reduce the number of MDSCs in various preclinical mod-
els of solid tumors [141]. They disrupt this premetastatic 
microenvironment and inhibit metastasis and may be an 
adjunctive approach to cancer treatment [141]. A recent 
phase 1 study combined the protein deacetylase inhibitor 
entinostat plus clofarabine to treat low-risk Philadelphia 
chromosomal negative (newly diagnosed older adults or 
adults with relapsed and refractory disease) acute lym-
phoblastic leukemia or biphenotypic leukemia. However, 
this study lacked a specific investigation of MDSCs [158].

Transplantation
The clinical importance of allogeneic hematopoietic stem 
cell transplantation (allo-HSCT), a therapeutic treatment 
for hematological malignancies, is substantial. The most 
frequent complication of allo-HSCT is acute and chronic 
graft versus host disease (aGVHD/cGVHD), which has 
a high incidence rate and mortality and has a significant 
detrimental impact on the efficacy of the procedure and 
the survival of transplant patients. The pathogenic pro-
cess of GVHD occurs when alloantigens on host antigen-
presenting cells (APCs) activate donor T lymphocytes, 
which then attack recipient tissue via Fas-FasL interac-
tions and TNF-α [159]. As for their inhibitory effects 
on alloreactive T-cell priming and growth as well as the 
induction of Tregs, there has been increasing interest in 
the contribution of donor MDSCs to GVHD manage-
ment. MDSCs can prevent the development of GVHD in 
HSCT and preserve the graft vs. leukemia (GVL) effect of 
grafts. In addition to suppressing alloreactive responses 
mediated by T lymphocytes and NK cells during graft 
infusion [160–163], it has been hypothesized that MDSCs 
will also impact the Th17/Tc17-Treg balance in allo-
HSCT grafts and play a role in the etiology of cGVHD 
[164]. Furthermore, a significant number of mouse 
models have demonstrated that MDSCs can inhibit 
GVHD toxicity by strongly inhibiting a T-cell mediated 
allogeneic reaction and enhancing Treg activity [159]. 
MDSCs can be used as a new cell-based therapy that is 
different from their role in other blood tumors. MDSCs 
derived from the G-CSF mobilization program can 
strongly inhibit a T-cell mediated allogeneic reaction and 
enhance Treg activity, thereby inhibiting GVHD toxic-
ity [165]. At the same time, GVL activity was maintained 
by selectively inducing NKG2D+ CD8+ memory T cells 
[166]. In the study of Zhang et al., CD115+Gr-1+F4/80+ 
MDSCs were identified, and it was found that, com-
pared with the commonly defined Gr-1+CD11b+ MDSCs, 
CD115+Gr-1+F4/80+ cells showed stronger inhibition 
ability and induced the growth of CD4+CD25+Foxp3+ 
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T regulatory cells (Tregs) in tumor-bearing mice. More 
importantly, CD115+ MDSCs induced the proliferation of 
NKG2D+CD8+ T cells, while the clearance of allogeneic 
lymphoma cells required the expression of NKG2D on 
donor T cells. This information provides a new treatment 
option for GVHD. Extracting large numbers of MDSCs 
is challenging because MDSCs are found in low num-
bers in healthy human tissues [165]. Interestingly, recent 
studies have found that combined administration includ-
ing ATRA, paclitaxel, vitamin D, and IL-2, can be able to 
induce MDSC differentiation by blocking their immuno-
suppressive activity [167]. By pretreating the recipient 
with cytokines, murine MDSCs can also be induced. A 
new MDSC subgroup (MDSC-IL-13) produced by exog-
enous IL-13 exposure was found. Although both MDSCs 
and MDSC-IL-13 inhibit the lethality of GVHD, MDSC-
IL-13 is more effective. This inhibition is attributed to 
the upregulation of ARG-1 and PD-L1 [168]. Starting 
before hemopoietic cell transfer (HCT) of allogeneic 
mice, the cells were pretreated with exogenous IL-33 to 
increase MDSCs and Tregs and inhibit GVHD lethal-
ity [169]. Treatment with β-galactose lectin-9 (Gal-9), a 
soluble lectin family member bound to galactoside, can 
increase MDSCs (G9-MDSCs) and inhibit the prolifera-
tion and activation of T cells. Infusion of G9 MDSCs into 
the graft successfully controls the long-term survival of 
severe aGVHD in allogeneic bone marrow transplant 
mouse models [170]. Recent studies have found that peg-
G-CSF mobilized leukocyte isolated MDSCs can reduce 
severe acute GVHD compared with peg-G-CSF mobile 
grafts after allo-HSCT [171]. The specific mechanism of 
the MDSC effects on GVHD and GVL has not been fully 
determined. Moreover, the overwhelming immunologi-
cal response that drives ongoing GVHD was not under 
MDSC control. Consequently, more research is required 
to confirm the efficacy and safety of MDSCs as a targeted 
therapy for GVHD.

Conclusion
MDSCs play a pathogenic role in the immunosuppressive 
tumor microenvironment, which constitutes an obstacle 
to the efficacy of immunotherapies such as CAR-T and 
ICIs. However, the complex phenotypic markers and lack 
of specific recognition of MDSCs, as well as the differ-
ences in pathogenesis in different tumors, show that the 
in-depth research and targeted treatment of MDSCs in 
hematological tumors still pose challenges. The devel-
opment and popularization of multiomics technol-
ogy and single-cell sequencing will help to more deeply 
understand the evolution of MDSCs and their specific 
regulatory functions in different blood tumor models. 
Targeting MDSCs to reshape the immunosuppressive 
microenvironment may be a promising direction for pre-
cise immunotherapy.
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