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Abstract 

Background  Activated immune cells (IC) in the tumor microenvironment (TME) are critical for anti-tumor efficacy. 
Greater understanding of the dynamic diversity and crosstalk between IC is needed to clarify their association with 
immune checkpoint inhibitor efficacy.

Methods  Patients from three tislelizumab monotherapy trials in solid tumors (NCT02407990, NCT04068519, 
NCT04004221) were retrospectively divided into subgroups by CD8+ T-cell and macrophage (Mφ) levels, assessed via 
multiplex immunohistochemistry (mIHC; n = 67) or gene expression profiling (GEP; n = 629).

Results  A trend of longer survival was observed in patients with both high CD8+ T-cell and Mφ levels versus other 
subgroups in the mIHC analysis (P = 0.11), which was confirmed with greater statistical significance in the GEP analysis 
(P = 0.0001). Co-existence of CD8+ T cells and Mφ was coupled with elevated CD8+ T-cell cytotoxicity, T-cell traffick‑
ing, MHC class I antigen presentation signatures/genes, and enrichment of the pro-inflammatory Mφ polarization 
pathway. Additionally, a high level of pro-inflammatory CD64+ Mφ density was associated with an immune-activated 
TME and survival benefit with tislelizumab (15.2 vs. 5.9 months for low density; P = 0.042). Spatial proximity analysis 
revealed that closer proximity between CD8+ T cells and CD64+ Mφ was associated with a survival benefit with tisleli‑
zumab (15.2 vs. 5.3 months for low proximity; P = 0.024).

Conclusions  These findings support the potential role of crosstalk between pro-inflammatory Mφ and cytotoxic T 
cells in the clinical benefit of tislelizumab.

Trial registration  NCT02407990, NCT04068519, NCT04004221.
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Introduction
In recent years, immunotherapy has transformed how we 
approach the treatment of multiple cancers. In particular, 
therapies targeting the programmed cell death protein 1 
(PD-1) receptor and programmed death-ligand 1 (PD-
L1) pathway are providing treatment opportunities in a 
wide range of tumor types by modulating the immune 
system to control tumor growth [1, 2]. However, not all 
patients benefit from PD-(L)1 blockade, and the most 
widely used biomarker, PD-L1, remains limited in its pre-
dictive capacity, highlighting an urgent need for novel 
biomarkers to identify patients who will benefit from 
these agents. CD8-positive (CD8+) T cells infiltrating the 
tumor microenvironment (TME) are considered the key 
tumor killing cells and main target of the PD-1/L1 axis 
and have thus been proposed to be predictive of the clini-
cal efficacy of immunotherapy [3, 4]. However, given the 
heterogeneity and complexity of the TME, exploration 
of the function of other cell types in the TME and their 
interplay with CD8+ T cells is critical for a deeper mech-
anistic understanding and to guide future clinical use. 
Thus far, the presence of large numbers of fibroblasts, 
myeloid-derived suppressor cells, and macrophages (Mφ) 
has been demonstrated in the TME, all of which exert 
either positive or negative regulation on CD8+ T cells [5].

Innate immunity, which is dominated by myeloid cells 
including Mφ, plays an important role in the TME [6]. 
Upon the onset of tumor niche development, Mφ are typ-
ically recruited from the circulation and are subsequently 
directed by various signals (e.g., cytokines) from tumor 
and stromal cells in the TME [7, 8]. According to the clas-
sical concept, Mφ can be dichotomized into M1-type and 
M2-type activation states associated with pro-inflamma-
tory and anti-inflammatory functions, respectively [9, 
10]. Because of their functional versatility, the prognos-
tic role of Mφ remains controversial. M2-type Mφ impair 
CD8+ T-cell cytotoxic function by expressing immune 
checkpoint ligands and produce immune-suppressive 
cytokines [11]. Mφ can recruit T cells into the TME by 
secreting pro-inflammatory chemokines and directly 
releasing tumor-killing molecules such as reactive oxygen 
species and nitric oxide [12, 13].

However, a more contemporary understanding of Mφ 
types suggests no absolute boundary between M1- and 
M2-type Mφ, and flexibility between different states has 
been observed [9, 14]. Mφ exhibit a spectrum of pheno-
types, not only with respect to biological function, but 
also in terms of gene expression profiles and cell surface 
markers [9]. The complexity of Mφ properties is further 
supported by the recent rise of single-cell RNA-sequenc-
ing (RNA-seq) technology, which has been used to iden-
tify multiple clusters/populations of Mφ with distinct 
gene expression profiles in solid tumors [15, 16]. Among 

these clusters, C1QC+ Mφ have been shown to exhibit 
significantly higher phagocytosis signatures and ISG15+ 
Mφ were associated with higher canonic pro-inflam-
matory M1 signatures, while SPP1+ pro-angiogenic Mφ 
functioned conversely and were typically associated with 
poor prognosis; however, there are limited data for Mφ 
with strong proliferative or regulatory features in the 
TME [17].

Mφ may influence anti-tumor responses further 
through the expression of multiple Fc gamma recep-
tors (FcγRs), which may interfere with drug treatment 
through therapeutic antibody binding and subsequent 
antibody-dependent cellular phagocytosis (ADCP). In 
particular, FcγRI (CD64) is reported to be induced by 
interferon-gamma (IFNγ) signaling, and therefore is 
highly expressed on IFNγ-induced M1-type, pro-inflam-
matory Mφ [18–21]. CD64-positive (CD64+) Mφ exhibit 
an increased phagocytosis ability [22], which has been 
reported to be associated with blocking the anti-tumor 
effect of anti-PD-1 antibodies in mouse models through 
ADCP-mediated T-cell elimination [23]. The anti-PD1 
antibody tislelizumab has been specifically designed with 
mutations in the Fc region to minimize binding to CD64 
on Mφ [23]. We therefore investigated the association 
between CD64+ Mφ and clinical outcomes in patients 
treated with tislelizumab.

In order to comprehensively dissect the roles and phe-
notypes of CD8+ T cells and Mφ in the TME, we applied 
multiplex immunohistochemistry (mIHC) and gene 
expression profiling (GEP) using both CD8+ T-cell and 
Mφ markers, including CD64 and CD68, to baseline sam-
ples collected from three clinical trials of tislelizumab 
monotherapy. Associations with clinical outcomes, 
potential molecular mechanisms, and crosstalk between 
immune cells are reported herein.

Materials and methods
Clinical cohorts and data collection
Patient data were collected from three clinical studies of 
tislelizumab monotherapy: A317-001 (NCT02407990) 
[24], A317-102 (NCT04068519) [11], and A317-204 
(NCT04004221) [25]. A317-001 and A317-102 were 
Phase 1/2 studies in multiple cancer types conducted 
globally and in China, respectively. A317-204 was a Phase 
2 study conducted in China and Korea in patients with 
previously treated, PD-L1‒positive (PD-L1 +) urothe-
lial carcinoma. Ethical approval was obtained from the 
relevant institutional review boards and all procedures 
followed were in accordance with the ethical standards 
of the responsible committee on human experimenta-
tion (institutional and national) and with the Helsinki 
Declaration of 1964 and later versions. Informed con-
sent to be included in the study, or the equivalent, was 
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obtained from all patients. Baseline formalin-fixed, 
paraffin-embedded (FFPE) samples were collected for 
biomarker testing. Overall survival (OS) of tislelizumab-
treated patients in the biomarker-evaluable population 
(BEP) from the three studies was pooled and analyzed to 
explore the association with biomarker subgroups in this 
retrospective analysis.

mIHC and data analysis
mIHC was performed using an Opal automation mIHC 
kit (PerkinElmer NEL801001KT or NEL821001KT, or 
equivalent) on the Leica BOND Rx platform followed by 
IF 6-colorWJJ-CD30 protocol in a CAP-controlled area 
within the Oncology and Immunology Unit of WuXi 
AppTec. Human FFPE specimens were labeled with dif-
ferent primary antibodies (CD64/FcγRΙ OTI3D3, Abcam 
ab140779; CD68 KP-1, VENTANA 790–2931; PD-L1 
SP263, VENTANA 790–4905; CD8 SP57, VENTANA 
790–4460; pan-Keratin AE1/AE3/PCK26, VENTANA 
760–2135), followed by appropriate secondary antibod-
ies (Polymer HRP from Opal automation mIHC kit) and 
different Opal dyes, and finally counterstained with spec-
tral 4’,6-diamidino-2-phenylindole (DAPI). Rabbit immu-
noglobulin G (IgG) (Abcam ab172730, EPR25A) and 
mouse immunoglobulin IgG1 (Abcam ab18443, kappa 
monoclonal MOPC-21) were used as the isotype con-
trol. Whole-slide images were acquired for each patient 
using the Leica Aperio VERSA 8 automated microscope. 
Image analysis was performed using the HALO software 
package (Indica Labs, Albuquerque, NM, USA), and the 
segmentation and mark-up of individual cells were per-
formed, reviewed, and scored by two pathologists in a 
blinded manner using the HALO HighPlex FL module 
(Indica Labs). “High” and “low” immune cell density sub-
groups were defined using the median density as the cut-
off between groups.

To determine the spatial relationship between CD8+ 
T cells and CD64+ Mφ, the Spatial Analysis Module of 
HALO was used. The proximity algorithm works by 
calculating the number of cells within a given distance 
of another cell. The average number of CD64+CD68+ 
cells ≤ 30  μm from each CD8+ T cell was determined 
across the total tumor area.

Gene expression profiling
Gene expression data were generated using the HTG 
EdgeSeq Precision Immuno-Oncology Panel (HTG 
Molecular Diagnostics, Inc., Tucson, AZ, USA), per the 
manufacturer’s instructions. The library was sequenced 
on the Illumina Nextseq 500 platform (Illumina, Inc., 
San Diego, CA, USA) and data were processed by HTG 
EdgeSeq parser software. Read count was normalized by 
library size to obtain count per million, which was then 

log transformed for downstream analysis [26]. “High” and 
“low” gene expression subgroups were defined using the 
median expression as the cutoff between groups.

The Cancer Genome Atlas (TCGA) data analysis
Gene expression and clinical data of 8485 solid tumors 
were retrieved from the Genomic Data Commons data 
portal (https://​portal.​gdc.​cancer.​gov/). The value of the 
fragments per kilobase of transcript per million mapped 
reads after upper-quartile normalization was used for sig-
nature score and survival analyses. “High” and “low” gene 
expression subgroups were defined using the median 
expression as the cutoff between groups.

Differential gene expression and gene set enrichment 
analysis (GSEA)
Differentially expressed genes or gene signatures were 
identified using the limma-voom workflow [27]. A nor-
malized gene signature score for each individual sample 
was calculated using gene set variation analysis (GSVA) 
package [26]. In the GEP dataset analysis, gene sets 
from Jerby-Arnon and colleagues [28] and Tirosh and 
colleagues [29] were used to estimate the abundance of 
CD8+ T cells and Mφ, respectively; 29 gene signature 
sets were used to describe the immune status and tumor 
features in the TME [30]. In addition, for gene set enrich-
ment analysis (GSEA), a gene list ranked according to the 
log fold change was used [31].

Single‑cell RNA‑seq datasets
The expression level of Mφ-related genes was retrieved 
from the single-cell RNA-seq Data Visualization and 
Analyzation tool (Peking University, Beijing, China) 
(http://​cancer-​pku.​cn:​3838/​Pan_​Myelo​id/). The Mφ sub-
type definition from Cheng and colleagues was used [17]. 
A cell was defined as positive for a gene if it was covered 
by at least one read, and the percentage of positive cells 
in each subtype was defined as the “proportion”. The nor-
malized value from the initial publication was then used 
to calculate the average expression of each gene across 
subtypes.

Statistical analysis
Median OS was estimated by the Kaplan–Meier 
method and a log-rank test was used to compare sur-
vival curves between different biomarker-defined 
patient subgroups throughout the study if there was no 
other specification. In the GEP dataset analysis only, a 
Cox model was applied to investigate the association 
of the composed biomarkers (CD8Hi/MφHi vs. others) 
with OS, and the impact of cancer type was also eval-
uated by adjusting it in the model. Hazard ratio (HR) 
and 95% confidence intervals (CI) were estimated from 

https://portal.gdc.cancer.gov/
http://cancer-pku.cn:3838/Pan_Myeloid/
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the models. To compare median gene expression or sig-
nature scores between biomarker-defined subgroups, 
Wilcoxon rank‒sum test was used. All statistical analy-
ses and visualizations were performed in R (v.4.0). All 
P-values are descriptive as this is a post-hoc explora-
tory analysis.

Results
High density of CD8+ T cells and Mφ is associated 
with a trend towards longer OS in patients receiving 
tislelizumab treatment
To assess the association of CD8+ T cells, Mφ, and 
PD-L1 expression and response to tislelizumab, an 
mIHC panel was developed including CD8 (cytotoxic 
T cells), CD68 (tumor-associated Mφ), CD64, PD-L1, 
and Pan-cytokeratin (tumor cell) surface markers 
to identify cell subtypes in the TME (Supplemental 
Fig. 1A). To explore the association between cell com-
ponents and OS in patients treated with tislelizumab, 
patients (n = 67) were assigned to subgroups according 
to the density of PD-L1 + cells, PD-L1 + tumor cells, 
PD-L1 + Mφ, CD8+ T cells, and Mφ. Patients with a 
high density of PD-L1 + cells, PD-L1 + tumor cells, 
or PD-L1 + Mφ exhibited no significant OS difference 
from those with a low density (Supplemental Fig.  1B–
D). Comparable median OS was observed in patients 
with high CD8+ T-cell density (CD8Hi) compared 
with patients with low CD8+ T-cell density (CD8Lo) 
(12.3 months vs. 10.6 months, P = 0.55; Fig. 1A). More 
prominently, patients with high Mφ density (CD68Hi) 
showed a trend towards a longer median OS compared 
with patients with low Mφ density (CD68Lo), although 
this did not reach statistical significance (15.0  months 
vs. 10.4 months, P = 0.11; Fig. 1B).

Given the different functions and potential crosstalk 
between CD8+ T cells and Mφ in the TME, we explored 
the clinical benefit of tislelizumab in patients catego-
rized into four subgroups according to the density of 
CD8+ T cells and Mφ (Fig. 1C), using a median cut-off. 
Although the analysis was limited by small sample size 
and insufficient statistical power, patients with CD8Hi/
CD68Hi showed the longest median OS (15.7  months) 
compared with the other three subgroups (5.1, 6.3, and 
11.2  months for CD8Hi/CD68Lo, CD8Lo/CD68Hi, and 

CD8Lo/CD68Lo, respectively; CD8Hi/CD68Hi vs. others, 
P = 0.11; Fig. 1D).

CD8Hi/MφHi gene signatures are associated with longer OS 
in patients receiving tislelizumab treatment
To further explore the observations made in the mIHC 
BEP (n = 67), an additional analysis of a larger popula-
tion of tislelizumab-treated patients with evaluable GEP 
(n = 629) was conducted. The populations overlapped, with 
65 patients from the mIHC BEP included in the GEP BEP. 
The baseline characteristics and median OS in the GEP 
BEP and mIHC BEP are shown in Table 1, alongside those 
from the overall pooled study population. Baseline charac-
teristics and median OS were comparable; however, com-
pared with the mIHC BEP, the GEP BEP included a broader 
spectrum of different cancer types. Using the median 
gene signature score of CD8+ T cells [28] and Mφ [29] as 
a cutoff, patients were stratified into four biomarker sub-
groups. Consistent with the data observed in the mIHC 
cohort, median OS was longer (14.9  months) in patients 
with CD8Hi/MφHi compared with the other three sub-
groups (11.1, 7.7, and 9.8 months for CD8Hi/MφLo, CD8Lo/
MφHi, and CD8Lo/MφLo, respectively; CD8Hi/MφHi vs. oth-
ers, P = 0.0001; Fig. 2A). Additionally, the Cox model also 
indicated that subgroups with high expression of both bio-
markers had an OS advantage compared to others (CD8Hi/
MφHi vs. others, HR = 0.68 (95% CI 0.55–0.83), unadjusted 
P < 0.0001). In particular, the superiority was consistently 
observed when adjusting cancer type as a covariate in the 
Cox model (CD8Hi/MφHi vs. others, HR = 0.71 (95% CI 
0.57–0.87), adjusted P < 0.0001). However, in the TCGA 
pan-solid tumor dataset or individual dataset of the major 
indications included in this study (data not shown), patients 
with CD8Hi/MφHi did not exhibit prolonged OS compared 
with the other subgroups (CD8Hi/MφHi vs. others, P = 0.17; 
Fig. 2B), which indicated that the OS benefit observed may 
potentially be related to tislelizumab rather than a prognos-
tic factor.

Co‑enrichment of CD8+ T cells and Mφ contribute 
to an immune‑activated TME
Differences in the characteristics of the TME in the sub-
groups defined by levels of CD8+ T-cell and CD68+ Mφ 
signatures were subsequently explored. The TME was 
characterized using 29 functional gene signatures, which 
included signatures for immune cells, angiogenesis, 

(See figure on next page.)
Fig. 1  Association of mIHC-defined immune cells with survival benefit of tislelizumab treatment A–B Kaplan–Meier overall survival analysis in 
subgroups defined by density of CD8+ T cells (A) and CD68+ Mφ (B) in mIHC BEP. C Representative mIHC image for four subgroups defined by 
density of CD8+ T cells and CD68+ Mφ. Scale bar: 50 µm. D Kaplan–Meier overall survival analysis in four subgroups defined by density of CD8+ T 
cells and CD68+ Mφ. Median overall survival was estimated by the Kaplan–Meier method and the log-rank test was used to compare survival curves 
between defined biomarker subgroups. BEP, biomarker-evaluable population; CI, confidence interval; DAPI, 4’,6-diamidino-2-phenylindole; Mφ, 
macrophages; mIHC, multiplex immunohistochemistry; NA, not available; Pan-CK, pan-cytokeratin
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Fig. 1  (See legend on previous page.)
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fibrosis, and malignant cell properties [30]. Subgroups 
with CD8Hi signatures, regardless of Mφ expression, 
tended to have an immune-activated TME, with enriched 
T-cell, cytotoxic cell, B-cell, natural killer cell, regula-
tory T-cell, and neutrophil signatures compared with 
CD8Lo subgroups (Fig.  3A). In particular, patients in 
the subgroup with CD8Hi/MφHi signatures had fur-
ther increased expression of immune-related signatures 
and genes, including those related to T-cell cytotoxic-
ity (CD8A, GNLY, GZMA, GZMB), T-cell trafficking 
(CXCL9, CXCL10, CCL4, CCL5), and major histocom-
patibility complex class I (MHC I) (TAP1, TAP2, HLA.A, 
HLA.B, HLA.C); in contrast, these patients exhibited 
the lowest expression of tumor proliferation signatures 
(PLK1, AURKA, CCNB1) (Fig.  3B, C). These analyses 
demonstrated a more immune-activated TME in this 
Mφ co-enriched CD8Hi subgroup than in the subgroups 

without Mφ co-enrichment or with CD8Lo signatures. To 
further examine Mφ phenotypes with or without CD8+ 
T-cell co-enrichment, we performed GSEA between the 
CD8Hi/MφHi and CD8Lo/MφHi subgroups. A significantly 
higher level of pro-inflammatory polarization signals [16, 
32] (e.g. STAT1, SLAMF7/8, ISG15, IRF1, IL32, CCL18) 
and lower expression of pro-angiogenic genes [17] (SPP1, 
TGFB2) was observed in patients with CD8Hi/MφHi 
(P = 0.0002) compared with patients with CD8Lo/MφHi 
(Fig. 3D, E).

Taken together, patients with CD8Hi/MφHi exhibited 
the highest anti-tumor phenotype among subgroups 
defined by cytotoxic T cells and Mφs, which may con-
tribute to an OS benefit following treatment with tisleli-
zumab. To further confirm this observation, we assessed 
the gene expression signatures in mIHC-defined sub-
groups and similar findings were observed (Supplemental 
Fig. 2A, B).

CD64+ Mφ are associated with clinical benefit 
of tislelizumab treatment
As co-enrichment with CD8+ T cells was associated with 
pro-inflammatory polarization of Mφ, it was hypoth-
esized that pro-inflammatory Mφ may be associated with 
the OS benefit of tislelizumab. CD64, a surface marker, is 
typically induced on Mφ by inflamed signals, but the role 
of CD64+ Mφ in the TME has not been clearly defined. 
Using the latest published single-cell datasets [17], we 
analyzed the properties of CD64 expression within 
Mφ subgroups and found that CD64 was more likely to 
be expressed on pro-inflammatory C1QC+ or ISG15+ 
Mφ than on pro-angiogenic SPP1+ Mφ (Supplemental 
Fig. 3). To further confirm the role of CD64+ Mφ, GSEA 
was conducted to explore the association of CD64+ Mφ 
with TME pathways. The results revealed a strong cor-
relation between CD64+ Mφ (CD64+CD68+) density 
and immune-activated pathways (e.g., IFNγ response, 
cytotoxic cells, antigen presentation signals) and a nega-
tive association with pro-tumor signals (e.g., TGFβ, Wnt, 
tumor proliferation signals) (Fig.  4A, B). Patients with 
a high density of CD64+ Mφ exhibited a longer median 
OS than those with a low density of CD64+ Mφ (15.2 vs. 
5.9 months; P = 0.042; Fig. 4C). In addition, spatial prox-
imity analysis revealed that patients with relatively high 
(closer) proximity between CD8+ T cells and CD64+ Mφ 
achieved longer median OS compared with those with 
low (further) proximity (15.2 vs. 5.3  months; P = 0.024; 
Fig.  4D). Consistently, patients with high proximity 
exhibited enrichment of multiple immune-activated 
pathways and higher expression of the T-cell trafficking 
chemokines CXCL9, CXCL10, CCL4, and CCL5 (Supple-
mental Fig. 4A, B).

Table 1  Baseline characteristics and overall survival for the 
overall population, GEP BEP, and mIHC BEP

BEP biomarker-evaluable population, CI confidence interval, EC esophageal 
cancer, ECOG Eastern Cooperative Oncology Group, GC gastric cancer, GEP 
gene expression profiling, HCC hepatocellular carcinoma, mIHC multiplex 
immunohistochemistry, NSCLC non-small cell lung cancer, UC urothelial cancer
a All patients enrolled in A317-001 (NCT02407990), A317-102 (NCT04068519), 
and A317-204 (NCT04004221)

Characteristic Overalla

(N = 864)
GEP BEP
(n = 629)

mIHC BEP
(n = 67)

Median (range) age, 
years

60 (18–82) 60 (19–81) 59 (26–78)

Sex, n (%)

  Male 537 (62.2) 396 (63.0) 45 (67.2)

  Female 327 (37.8) 233 (37.0) 22 (32.8)

ECOG performance 
status, n (%)

  0 302 (35.0) 228 (36.2) 20 (29.9)

  1 562 (65.0) 401 (63.8) 47 (70.1)

Cancer type, n (%)

  NSCLC 105 (12.2) 57 (9.1) 25 (37.3)

  GC 78 (9.0) 58 (9.2) 13 (19.4)

  EC 79 (9.1) 66 (10.5) 4 (6.0)

  UC 152 (17.6) 127 (20.2) 25 (37.3)

  HCC 68 (7.9) 50 (7.9) 0 (0.0)

  Other 382 (44.2) 271 (43.1) 0 (0.0)

Patients with any prior 
anticancer drug therapy, 
n (%)

  0–1 407 (47.1) 297 (47.2) 29 (43.3)

  2 204 (23.6) 147 (23.4) 20 (29.9)

  ≥ 3 190 (22.0) 137 (21.8) 18 (26.9)

  Unknown 63 (7.3) 48 (7.6) 0 (0.0)

Median overall survival, 
months (95% CI)

11.1 (9.5–11.7) 11.1 (9.6–11.9) 11.2 (6.2–16.1)
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Taken together, high CD64+ pro-inflammatory Mφ 
density was associated with an immune-activated TME 
and prolonged OS in patients who received tislelizumab.

Discussion
Although CD8+ T cells alone have been reported as a 
potential predictive biomarker for immune checkpoint 
inhibitors, indicative of an immunologically “hot” tumor, 
the TME is an extremely complex system involving other 
key players. Therefore, a combination of biomarkers may 
have the capability to deliver multi-dimensional informa-
tion and to provide additional insight into clinical use 
[33–35]. In the current study, we focused on Mφ in the 
TME, a long-standing major component with multiple 
controversial observations. For the first time, we found 
that co-enrichment of CD8+ T cells and Mφ was associ-
ated with OS benefit by both mIHC and GEP. Analysis of 
the TCGA pan-solid tumor dataset suggested our obser-
vation may be tislelizumab treatment-related rather than 
a prognostic factor.

By focusing on the functional gene expression profile of 
tislelizumab-treated patients, we found that the subgroup 
with high expression of both CD8+ T-cell and Mφ sig-
natures exhibited a more immune-activating phenotype 
compared with subgroups with high CD8+ T-cell signa-
ture or high Mφ signature expression only, prompting 
us to speculate on the potential positive feedback loop 
between them. Firstly, pro-inflammatory Mφ-derived 

chemokines have been reported to attract circulating 
T cells to the TME [36, 37]. This is consistent with our 
finding that the subgroup with high CD8+ T-cell and 
Mφ signature expression exhibited increased expres-
sion of genes involved in T-cell recruitment, including 
CXCL9, the most significant gene associated with immu-
notherapy efficacy in a meta-analysis [38]. As one of the 
major antigen-presenting cell types in the TME, Mφ also 
directly activate helper T cells, which further promote 
the anti-tumor activity of cytotoxic T cells, as demon-
strated in the present study by the enhanced expression 
level of the granzyme gene family. Together with the 
increased expression of the MHC I antigen presentation 
signature observed in our analysis, co-existence with pro-
inflammatory Mφ created a TME conducive to increased 
CD8+ T-cell activation.

Reciprocally, CD8+ T cells may also drive pro-inflam-
matory polarization of monocytes/Mφ, as suggested by 
the higher expression of IFNγ signaling pathway-related 
genes such as STAT1, ISG15, and IRF1 in patients with 
high CD8+ T-cell and Mφ signature expression in our 
analyses. In contrast, pro-angiogenic or M2-type-
related genes such as SPP1 and TGFB2 were found to be 
expressed at higher levels by Mφ in the subgroup with 
low CD8+ T-cell signature expression and high Mφ sig-
nature expression. Therefore, high levels of both CD8+ 
T cells and Mφ may indicate the existence of a positive 
feedback loop that establishes a favorable baseline TME 

Fig. 2  Overall survival in CD8+ T-cell and Mφ gene signature-defined subgroups. A–B Kaplan–Meier overall survival analysis in four subgroups 
defined by CD8+ T-cell signature and Mφ signature in (A) tislelizumab-treated GEP BEP and (B) TCGA pan-solid tumor dataset. Median overall 
survival was estimated by the Kaplan–Meier method and the log-rank test was used to compare survival curves between defined biomarker 
subgroups. BEP, biomarker-evaluable population; CI, confidence interval; GEP, gene expression profiling; Mφ, macrophages; TCGA, The Cancer 
Genome Atlas
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Fig. 3  Distinct TME in four signature-defined subgroups in the GEP BEP. A Heatmap of 29 key TME-described gene signatures. B Box plot showing 
signature score differences in cytotoxic T-cell, T-cell traffic, MHC I, and tumor proliferation signatures among four subgroups defined by CD8+ T-cell 
and Mφ signatures. C Heatmap showing the differentially expressed genes among four subgroups defined by CD8+ T-cell and Mφ signatures. 
D GSEA of pro-inflammatory Mφ polarization signal between CD8Hi/MφHi and CD8Lo/MφHi subgroups. E: Heatmap showing the differentially 
expressed genes associated with pro-inflammatory Mφ polarization among four subgroups defined by CD8+ T-cell and Mφ signatures. *P < .05, 
**P < .01, ***P < .001, ****P < .0001. BEP, biomarker-evaluable population; FDR, false discovery rate; GSEA, gene set enrichment analysis; Mφ, 
macrophages; MHC I, major histocompatibility complex class I; OS, overall survival; TME, tumor microenvironment
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Fig. 4  Association of CD64+ Mφ with immune-activated TME and clinical benefit of tislelizumab treatment in the mIHC BEP. A Representative 
mIHC image for a patient with a high and low CD64+ Mφ density. B GSEA illustrating the association of CD64+ Mφ density and TME pathways. 
C Kaplan–Meier overall survival analysis in subgroups defined by density of CD64+ Mφ. D Kaplan–Meier overall survival analysis in subgroups 
defined by proximity of CD8+ T cells and CD64+ Mφ. Median overall survival was estimated by the Kaplan–Meier method and the log-rank 
test was used to compare survival curves between defined biomarker subgroups. BEP, biomarker-evaluable population; CI, confidence 
interval; DAPI, 4’,6-diamidino-2-phenylindole; FDR, false discovery rate; GSEA, gene set enrichment analysis; Mφ, macrophages; mIHC, multiplex 
immunohistochemistry; NES, normalized enrichment score; Pan-CK, pan-cytokeratin; TME, tumor microenvironment
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for immunotherapy. Indeed, this has been reported in an 
animal model and in patients with triple-negative breast 
cancer [39, 40]. High CD64-expressing pro-inflammatory 
Mφ (CD64+CD68+) density was also associated with OS 
benefit. Additionally, proximity between CD8+ T cells 
and pro-inflammatory CD64+ Mφ was associated with 
OS benefit in our analysis, suggesting an association with 
a CD8 co-enriched TME and further strengthening our 
crosstalk hypothesis and dual-biomarker strategy.

Although CD64 expression is correlated with pro-
inflammatory Mφ, it may also be detrimental to effector 
T cells through antibody-FcγR binding-mediated ADCP. 
Previously, an inverse correlation between CD64+ Mφ 
infiltration and the density of CD8+ PD-1+ T cells was 
observed within tumors after treatment with Fc function-
competent anti-PD-1 antibodies [23]. With its uniquely 
engineered Fc region, tislelizumab has the potential to 
avoid this adverse effect of effector T-cell depletion by 
CD64+ Mφ, while retaining their pro-inflammatory anti-
tumor activity. As expected, we observed longer OS in 
tislelizumab-treated patients with a higher density of 
CD64+ Mφ and found that CD64 + Mφ density was posi-
tively associated with enrichment of immune-activating 
pathways (e.g., IFNγ response, cytotoxic cell, and antigen 
presentation), and negative association with pro-tumor 
signals (e.g., TGFβ, Wnt signaling, and tumor prolifera-
tion). Tislelizumab has previously demonstrated a high 
complete response rate regardless of FcγRΙ-expressing 
Mφ abundance in the classical Hodgkin lymphoma TME 
[41, 42], further supporting the lack of a negative effect 
of CD64+ Mφ infiltration on the anti-tumor activity of 
tislelizumab.

Further analysis of the biomarker strategy in this study 
is warranted and should be guided by the findings pre-
sented here. When assessing the results of this study, 
two aspects of the design should be considered: the 
small sample size of the mIHC dataset, which reduced 
statistical power for these analyses, and the absence of 
formal statistical hypothesis testing due to the retrospec-
tive nature of the analyses. The smaller sample size may 
have contributed to the non-significant OS result in the 
CD8Hi subgroup vs. the CD8Lo subgroup in the mIHC 
dataset, which was in contrast to results in the GEP data-
set (CD8hi vs. CD8lo, median OS 13.27 vs. 8.57 months, 
P = 0.0026) and prior studies [43]. The accuracy of the 
cell proportion estimations in the GEP dataset could have 
been improved by higher resolution bulk RNA-seq and, 
as a pan-cancer study. Additionally, for future studies, 
further exploration in each indication would be required 
because TME differences between tumor types were not 
considered in most analyses reported herein. Use of a 
multivariant model may have offered identification and 
analysis of confounding factors such as age, sex and prior 

therapies, and better evidence for our crosstalk hypoth-
esis may have benefited from inclusion of dynamic TME 
changes after treatment, but these had to be omitted 
because post-treatment sampling was not feasible.

In conclusion, the combination of high CD8+ T-cell 
and high Mφ levels may aid the identification of the sub-
set of patients who are most likely to benefit from treat-
ment with tislelizumab. This strategy may provide new 
insights into the design of therapeutic antibodies and 
drug development in the future.
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