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Abstract 

Extensive clinical and experimental evidence suggests that macrophages play a crucial role in cancer immunother-
apy. Cluster of differentiation (CD) 47, which is found on both healthy and malignant cells, regulates macrophage-
mediated phagocytosis by sending a "don’t eat me" signal to the signal regulatory protein alpha (SIRPα) receptor. 
Increasing evidence demonstrates that blocking CD47 interaction with SIRPα can enhance cancer cell clearance by 
macrophages. Additionally, inhibition of CD47/SIRPα interaction can increase antigen cross-presentation, leading to 
T-cell priming and an activated adaptive antitumor immune response. Therefore, inhibiting CD47/SIRPα axis has a 
significant impact on tumor immunotherapy. Studies on CD47 monoclonal antibodies are at the forefront of research, 
and impressive results have been obtained. Nevertheless, hematotoxicity, especially anemia, has become the most 
common adverse effect of the CD47 monoclonal antibody. More specific targeted drugs (i.e., bispecific antibodies, 
SIRPα/Fc fusion protein antibodies, and small-molecule inhibitors) have been developed to reduce hematotoxicity. 
Here, we review the present usage of CD47 antagonists for the treatment of lymphomas and hematologic neoplasms 
from the perspectives of structure, function, and clinical trials, including a comprehensive overview of the drugs in 
development.
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Background
Structure, Expression, and function of CD47/SIRPα
Cancer treatment targeting immune checkpoints like 
programmed cell death receptor-1 (PD-1)/ Programmed 
cell death ligand-1 (PD-L1) has raised significant interest. 

Recently, pharmaceutical communities have shifted their 
attention to the development of new anti-cancer medi-
cines that target innate immunity checkpoints, such as 
the immune checkpoint of macrophages: a cluster of 
differentiation (CD) 47/signal regulatory protein alpha 
(SIRPα) pathway.

CD47, formerly known as integrin-associated protein, 
is a 50  kDa plasma membrane molecule. CD47 is com-
posed of an extracellular variable region that interacts 
with corresponding ligands (Fig.  1A), a transmembrane 
region comprised of highly hydrophobic transmembrane 
segments, and a hydrophilic carboxy-terminal intracellu-
lar region [1].

CD47 was firstly found as a transmembrane protein of 
red blood cells (RBCs). Current evidence indicates that 
CD47 is widely expressed in various normal human cell 
types, as well as in the membrane of different cancer cell 
types. In oncology study, CD47 was initially discovered as 
a tumor antigen in human ovarian cancer, and later was 
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found overexpressed in various lymphomas and hema-
tological tumors, such as non-Hodgkin’s lymphomas 
(NHL) [2], T-cell lymphoma [3], acute myeloid leukemia 
(AML) and myelodysplastic syndrome (MDS) [4].

CD47 is capable of interacting with a variety of extra-
cellular ligands, including SIRPα, thrombospondin-1 
(TSP-1), integrins (α2β1, α4β1, α5β1, and α6β1), SIRPγ, 
CD36 and CD95, as well as with various intracellular 
ligands, such as the Gi proteins and Bcl-2/adenovirus 
E1B 19-kDa interacting protein 3 [1, 5]. Among these 
ligands, SIRPα, TSP-1 and integrins have been mostly 
studied (Fig. 1B).

SIRPα is a member of the receptor family of signal 
regulatory proteins (SIRP) which involves five members 
(SIRPα, SIRPβ1, SIRPγ, SIRPβ2, and SIRPδ) encoded 
by a gene cluster located on chromosome 20p13 [6]. 
Among the family members, SIRPα is composed of an 
intracellular domain containing an immunoreceptor 
tyrosine-based inhibitor motif (ITIM), a transmembrane-
spanning region, and three extracellular immunoglobulin 

superfamily domains (Fig.  1C). When CD47 binds to 
SIRPα, ITIM in the cytoplasmic tail of SIRPα is phos-
phorylated. Phosphatases including Src homology phos-
phatase (SHP)-1 and SHP-2, are then recruited and 
activated (Fig. 1C). CD47 is capable of distinguishing self 
or non-self cells via attaching to SIRPα which are mainly 
expressed on myeloid cells (monocytes, granulocytes, 
dendritic cells, and particularly macrophages [7–9]). 
When CD47 binds to SIRPα, the "don’t eat me" signal is 
activated, inhibiting macrophage-mediated phagocytosis 
(Fig. 2) [10, 11].

TSP-1, which belongs to a thrombospondin family of 
five secreted glycoproteins, has a high binding affinity to 
CD47 at picomolar concentrations [12]. The interaction 
occurs via the C-terminal domain of TSP-1, and plays an 
important role in maintaining vascular tone, blood pres-
sure, and modulating cardiac response [13]. In addition, 
several integrins are capable of interacting with CD47. 
For example, α5β1 is involved in chondrocyte mecha-
notransduction by binding to CD47 [14]. Dysregulation 

Fig. 1 Overall structures of CD47, SIRPα and CD47 complex. A Structure of the ectodomain of human CD47 (PDB#2VSC). B Interaction of CD47 
with three major ligands (SIRPα, TSP-1 and integrin). The figure was created by Biorender.com. C Complete extracellular region of human SIRPα 
(PDB#2WNG). The structures were reconstructed using VMD software. Abbreviations: CD47, cluster of differentiation 47; IgSF, immunoglobulin 
superfamily; ITIM, immunoreceptor tyrosine-based inhibitory motif; SHPS-1/2, protein tyrosine phosphatase substrate-1/2; SIRPα, signal-regulatory 
protein α; TSP-1: thrombospondin-1
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of αVβ3 and CD47 signaling leads to joint inflammation, 
cartilage destruction, and progression of osteoarthritis 
[15].

Function and mechanism of CD47/SIRPα axis in tumor cells
CD47 expression is significantly elevated in leukemic 
cancer cells and supports these cells in evading phagocy-
tosis by macrophages [16]. Numerous studies have indi-
cated that CD47 is critical for treatment, prognosis, and 
diagnosis of a variety of malignancies, in which the most 
notable function of the CD47/SIRPα axis regards cancer 
therapy.

Recent research has shown that the CD47/SIRPα axis 
controls the destiny of tumor cells. Inhibiting the axis 
is able to enhance macrophage phagocytosis of tumor 
cells. So far five primary mechanisms of the CD47/
SIRPα axis have been discovered (Fig.  3). Firstly, sup-
pression of the CD47-SIRPα interaction results in mac-
rophage phagocytosis of tumor cells. Full activation 
of macrophages requires two conditions: blockade of 
the CD47 "don’t eat me" signal, and activation of the 
Fc receptor "eat me" signal. The presence of either can 
only provide a limited macrophage activation [17]. Sec-
ondly, blocking the CD47/SIRPα axis can transform 

tumor-associated macrophages into an antitumor state, 
and increase tumor macrophage recruitment [18, 19]. 
Thirdly, inhibition of the SIRPα/CD47 axis promotes 
phagocytosis by dendritic cells and subsequent antigen 
presentation to CD8 + T-cells, hence inducing an adap-
tive antitumor immune response [20, 21]. Moreover, 
CD47 antagonists destroy tumor cells utilizing natural 
killer cell-mediated antibody-dependent cytotoxic-
ity (ADCC) and complement-dependent cytotoxicity 
(CDC) [22, 23]. Lastly, CD47 antagonists can promote 
tumor cell death [24, 25], reduce tumor cell prolifera-
tion [26–28], and prevent tumor cell migration [29, 30].

Additionally, CD47 can be used as a prognostic 
marker in a variety of cancers. High CD47 expression 
has been demonstrated to correlate with a poor out-
come in AML [16], chronic myelogenous leukemia [31], 
NHL [32] and some solid tumors (e.g., breast cancer, 
renal cell carcinoma, non-small cell lung cancer, thy-
roid cancer [33], etc.).

Aside from the implications mentioned above in 
tumor treatment and prognosis, CD47 has been impli-
cated to aid the diagnosis of non-small cell lung cancer 
[34], renal cell tumors, and hematological tumors [33].

Fig. 2 Macrophages distinguish between “self” or “non-self” by binding to SIRPα transmembrane protein on macrophage to form the CD47/
SIRPα signaling complex. A CD47 expressed on cancer cell membrane binds to SIRPɑ on macrophage cell membrane to activate the “Don’t eat 
me” signal and block macrophage phagocytosis of cancer cells. B Blocking CD47-SIRPɑ interaction between cancer cell and macrophage induces 
phagocytosis by macrophage. Abbreviation: CD47, cluster of differentiation 47; SIRPα, signal-regulatory protein α
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Clinical development of CD47/SIRPα antibodies
In the past decade, patent applications for CD47 antag-
onists have increased steadily, reaching a high in 2019. 
The top five licensing authorities (the United States, the 
World Intellectual Property Organization, the Euro-
pean Patent Office, Japan, and China) hold a large num-
ber of CD47 antagonist patents (> 67% of all patents), 
in which numerous of them have entered clinical trials. 
Currently, CD47 antagonists are primarily classified 
into five categories: (1) CD47 monoclonal antibody; (2) 
CD47-targeted bispecific antibody; (3) SIRPα/Fc fusion 
protein antibody, (4) CD47 small-molecule inhibitor, 
and (5) CD47 antibody–drug conjugate. Since no clini-
cal trials on CD47 small-molecule inhibitors or anti-
body–drug conjugates for hematologic malignancies 
are publicly available, only the first three categories will 
be discussed.

Recent clinical investigations employing CD47 mon-
oclonal antibodies have produced excellent results. 
Anemia and thrombocytopenia are the most common 
adverse events (AEs) associated with CD47 monoclonal 
antibodies [35]. This is due to the fact that erythrocytes 
and platelets express CD47; CD47 monoclonal antibodies 
can attack them either through direct binding or through 

activation of NK cells and macrophages via Fc-mediated 
ADCC or CDC [36].

To reduce toxicity and improve treatment efficacy, 
researchers have developed CD47-targeted bispecific 
antibodies and the SIRPα/Fc fusion protein antibodies. 
The synergistic effect of bispecific antibodies targeting 
CD47 and other tumor antigens can potentially increase 
the safety and efficacy of treatment by targeting tumor 
cells preferentially [37].

SIRPα/Fc fusion protein antibodies are able to destroy 
CD47/SIRPα binding to decrease the CD47 "don’t eat me" 
signal and generate an activating prophagocytic signal via 
Fc receptors [3, 32, 38]. Since SIRPα is not expressed on 
human blood cells, SIRPα/Fc fusion protein antibodies 
display negligible binding to RBCs or blood platelets, dis-
tinguishing them from anti-CD47 monoclonal antibodies 
[39].

The CD47/SIRPα axis has been identified as a poten-
tial future immunotherapeutic target for hematologi-
cal malignancies. Here, we provide a summary of CD47 
antagonist clinical research frontiers in treating lympho-
mas and hematological malignancies. All clinical research 
and trial information was gathered from the PubMed 
database, Researchgate database, the US national clinical 

Fig. 3 Inhibiting CD47/SIRPα axis regulates the fate of cancer cells. Inhibiting the CD47/SIRPα axis can (A) directly enhance phagocytosis of 
macrophages to tumor cells; B transform tumor-associated macrophages into an antitumor state and increase the recruitment of macrophages in 
tumors; C promote phagocytosis by dendritic cells and antigen presentation to CD8 + T-cells; (D) destroy tumor cells by natural killer cell-mediated 
ADCC and CDC; E increase tumor cell death, inhibit tumor cell proliferation, and prevent tumor cell migration. Abbreviation: CD47, cluster of 
differentiation 47; SIRPα, signal-regulatory protein α; ACDD: antibody-dependent cellular cytotoxicity; CDC: complement-dependent cytotoxicity



Page 5 of 22Yang et al. Biomarker Research           (2023) 11:15  

trials registry (NCT) system www. clini caltr ials. gov and 
the China drug trials registry (CTR) system www. china 
drugt rials. org. cn.

CD47 antagonist in lymphomas treatment
Currently, twenty-three CD47 antagonists are available in 
clinical trials for the treatment of lymphomas (Table 1). 
A list of CD47 antagonists with published clinical data is 
shown (Table 2).

CD47 monoclonal antibodies
CC‑90002
CC-90002 is the first generation of humanized IgG4 anti-
CD47 antibody entering clinical research. CC-90002 
plus rituximab (an anti-CD20 monoclonal antibody) 
demonstrated tolerability and modest clinical activity 
in the heavily pretreated relapsed/refractory (R/R) NHL 
patients [48]. AEs were predominantly Grade 1/2, and 
the most frequent Grade 3/4 AEs were neutropenia (38%) 
and thrombocytopenia (21%). Twenty-four subjects were 
treated, one subject attained a stable complete response 
rate (CR), two subjects achieved partial response (PR), 
and three subjects achieved stable disease (SD). Although 
the fact that the current data suggest further investiga-
tion of CC-90002 in conjunction with rituximab for the 
treatment of NHL, no Phase II clinical studies have been 
conducted.

Hu5F9‑G4
Hu5F9-G4 (5F9), also known as magrolimab, is a human-
ized monoclonal IgG4 antibody that was independently 
developed by Stanford University Forty Seven (Stanford, 
CA, USA) [49]. 5F9 not only inhibits CD47 signaling, 
which increases macrophage phagocytosis, but also stim-
ulates ADCC [50]. Studies have demonstrated that 5F9 
was more effective in combination with other antibodies 
than alone in the treatment of non-Hodgkin lymphoma 
[1, 43, 51, 52].

A phase Ib study (NCT02953509) assessed the safety 
and efficacy of 5F9 in combination with rituximab in 22 
patients with R/R lymphoma (15 with DLBCL and 7 with 
FL) [43]. According to this study, CD47 receptors were 
present on more than 90% of peripheral blood cells. The 
overall response rate (ORR) and complete response rate 
(CR) were 50% and 36%, respectively. ORR and CR rates 
for DLBCL patients were 40% (6/15) and 33% (5/15), 
respectively. The ORR and CR for patients with a diag-
nosis of FL were 71% (5/7) and 43% (3/7), respectively. 
Anemia was the most prevalent AE, occurring in around 
42% of patients, while all were manageable. To treat ane-
mia, priming doses of 1  mg/kg 5F9 and maintenance 
doses of 30 mg/kg every week (QW) were administered. 
This study demonstrates that the combination of 5F9 and 

rituximab is effective in patients with R/R DLBCL or FL 
without a considerable risk of AEs.

In 2018, the Food and Drug Administration (FDA) 
approved 5F9 for the treatment of two types of R/R B-cell 
NHL (DLBCL and FL). Ongoing clinical trials involve 
the combination of 5F9 and rituximab (NCT03527147), 
the BTK inhibitor acalabrutinib (NCT03527147), 
mogamulizumab (NCT04541017), and pabolizumab 
(NCT04788043).

TJ011133 (TJC4, lemzoparlimab)
TJ011133 (TJC4, also known as lemzoparlimab) is a 
therapeutic anti-CD47 IgG4 antibody of the next genera-
tion investigated by I-Mab Biopharma (Beijing, China). 
TJ011133 has a unique binding epitope and an RBC/
platelet sparing characteristic; therefore it does not 
produce substantial hematologic toxicity and does not 
require priming doses like 5F9 [49].

Eight R/R patients with CD20-positive NHL who had 
received at least two prior lines of therapy were included 
in a Phase Ib research (NCT03934814) [41]. TJ011133 
was administered intravenously at doses of 20 or 30 mg/
kg weekly with rituximab. All treatment-related AEs were 
grade 1 or 2 except for one patient who reported Grade 
3 treatment-related AEs. CD47 receptor occupancy was 
80% and 90% in those who received 20 mg/kg and 30 mg/
kg of TJ011133, respectively. The assessable efficacy of 
seven individuals showed an ORR of 57% (three CR, one 
PR and the rest SD). The combo therapy demonstrated 
therapeutic effectiveness for individuals with R/R NHL. 
In addition, no priming dose was required for TJ011133 
in this clinical research.

AK117 (Ligufalimab)
AK117 is a novel humanized IgG4 monoclonal antibody 
with a unique structure. Due to the unique conformation 
of AK117/CD47 complex, AK117 has no hemagglutina-
tion effect. A phase I clinical trial of AK117 revealed that 
it was well-tolerated up to 45  mg/kg per week in par-
ticipants with no dose-limiting toxicity events and no 
hematological treatment-related AEs. As a result, AK117 
does not need a lower ’priming’ dose to prevent anemia. 
The CD47 receptor occupancy of AK117 on T cells in 
peripheral blood of participants reached and sustained 
at 100% at a dose of 3  mg/kg alone, with complete and 
lasting receptor occupancy in peripheral blood found 
at ≥ 10  mg/kg. AK117 has an excellent safety profile in 
clinical applications. A series of clinical trials of AK117 
alone or in combination with multiple agents (e.g., rituxi-
mab) are ongoing for the treatment of a variety of hema-
tologic malignancies [53].

http://www.clinicaltrials.gov
http://www.chinadrugtrials.org.cn
http://www.chinadrugtrials.org.cn
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CD47-targeted bispecific antibodies
CD47/CD20‑targeted bispecific antibodies

IMM0306 Both in  vivo and in  vitro experiments con-
firmed that comparing with CD47 monoclonal antibod-
ies, anti-CD47/CD20 bispecific antibodies showed bet-
ter binding preference to tumor cells and more potent 
anti-lymphoma activity [54, 55]. Researchers suggest that 
anti-CD47/CD20 bispecific antibodies might be viable 
candidates for clinical trials, in which IMM0306 was the 
first of these to report preclinical results.

IMM0306 is a fusion protein of CD20 monoclonal anti-
body with CD47 binding domain of SIRPα. It exerts 
excellent cancer killing efficacy by activating both mac-
rophages and NK cells via blockade of CD47-SIRPα 
interaction and FcɣR engagement by simultaneously 
binding to CD47 and CD20 of B cells. Extensive in vitro 
analysis revealed that IMM0306 had a strong affinity 
for a variety of hematologic malignant cells. Concern-
ing the usage safety, IMM0306 has no binding activ-
ity on human RBCs. IMM0306 showed stronger ADCC 
activity and lower CDC activity in various hematologic 
malignancy cells when compared to rituximab, possibly 
due to the fact that the Fc segment of the recombinant 
protein in IMM0306 is IgG1. Application of IMM0306 
in treating tumor-implanted SCID mice significantly 
inhibited tumor growth. Furthermore, in a lymphoma 
orthotopic model, IMM0306 paired with lenalidomide 
outperformed any single medicine or rituximab combi-
nation with lenalidomide in terms of therapeutic impact 
[17]. IMM0306 is being tested in two phase I clinical 
trials in patients with R/R CD20-positive B-cell NHL 
(NCT04746131 and CTR20192612).

CD47/CD19‑targeted bispecific antibody

TG‑1801 (NI‑1701) TG-1801 is an investigational 
first-in-class, bispecific anti-CD47/CD19 monoclonal 
antibody. TG-1801 has exhibited a potent capability to 
induce ADCP and ADCC in malignant B-cell lines and 
primary tumor B-cells from patients with ALL, CLL, 
and different subtypes of NHL in preclinical studies [56]. 
TG-1801 combined with rituximab was observed to have 
a stronger tumor-killing synergy than applying rituximab 
alone [36]. TG-1801 was also confirmed to be compatible 
with rituximab [57] and umbalixib (a phosphatidylino-
sitol 3-kinase δ inhibitor) [57, 58] for the treatment of 
B-cell NHL and CLL.

TG-1801 is currently being evaluated in two phase I tri-
als (NCT03804996 and NCT04806035) to evaluate its 

safety and efficacy in treating patients with B-cell lym-
phoma and CLL. No clinical data on TG-1801 have been 
reported so far.

SIRPα/Fc fusion protein antibodies
TTI‑621 (SIRPα‑IgG1 Fc)
TTI-621 is a fusion protein developed from the CD47 
binding domain of human SIRPα linked to the Fc region 
of human IgG1. It is intended to improve phagocytosis 
and anti-cancer activity of macrophages by preventing 
CD47-SIRPα interaction between malignant cells and 
macrophages through Fc receptors engagement [45]. 
In preclinical studies, TTI-621 was shown to enhance 
macrophage phagocytosis of various malignant cells and 
decreased the growth of AML and B-cell lymphoma in 
xenografts. Besides, TTI-621 also displayed low binding 
affinity to human erythrocytes [3].

NCT02663518 is the First-in-human (FIH) phase I 
study in patients with R/R lymphoma [3]. This study 
aimed to evaluate the safety and efficacy of TTI-621 
as a monotherapy or combination with rituximab or 
nivolumab. The MTD of the TTI-621 single-drug and 
the combined groups were 0.2 and 0.1  mg/kg, respec-
tively. No death happened as a result of treatment-related 
adverse events, and only 37% of the patients experienced 
adverse events (AEs) of grade 3 or higher. Twenty per-
cent of patients experienced thrombocytopenia, which 
was reversible and often cleared within one week. At the 
highest dose evaluated (0.5  mg/kg), the systemic expo-
sure of TTI-621 showed dose-dependent without a pla-
teau. The receptor occupancy rate was 34% and 66% at 
0.2 and 0.5  mg/kg groups, respectively. Furthermore, 
single TTI-621 dosages up to 0.5 mg/kg did not increase 
the incidence of thrombocytopenia as compared to the 
0.2  mg/kg group. The ORRs for TTI-621 monotherapy 
and TTI-621 plus rituximab for DLBCL were 29% (2/7) 
and 21% (5/24), respectively. The ORR for TTI-621 mon-
otherapy in T-cell NHL was 25% (8/32). Updated results 
from clinical study NCT02663518 showed that TTI-621 
demonstrated ORR in 14/71 (20%) NHL patients, includ-
ing those with cutaneous T-cell lymphoma (n = 42, one 
CR, seven PR), peripheral T-cell lymphoma (n = 22, two 
CR, two PR), and DLBCL (n= 7, one CR, one PR) [44].

Another phase I clinical trial (NCT02890368) con-
firmed that topically administered TTI-621 was toler-
ated and had systemic and local antitumor activity in 
patients with R/R fungal disease and Sezary syndrome 
[45]. TTI621 was administered intralesionally to 35 indi-
viduals. The maximum assessed dosing regimen in this 
trial was 10 mg, and the MTD was not met. Although 25 
(71%) individuals experienced treatment-related adverse 
events, they were all grade 1 or 2. During the trial, the 
Composite Assessment of Index Lesion Severity (CAILS) 
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scores were reduced in 26 (90%) of the 29 patients, with 
CAILS score reductions of 50% or more in 10 (34%) of 
the patients. The median time to respond for the nine 
patients with a CAILS response on TTI-621 monother-
apy was 45  days (95% CI 17–66). Even single injections 
reduced CAILs scores, and lesions adjacent to the injec-
tion site in eight patients showed decreases. Continuing 
monotherapy with TTI-621 induced further reductions 
in CAILS scores up to 100%. Nevertheless, the efficacy of 
TTI-621 in combination with pegylated interferon alpha-
2a or a PD-1/PD-L1 inhibitor appearred poor in the trial.

In conclusion, TTI-621 is well-tolerated and can be 
used as monotherapy in patients with R/R NHL and com-
bined with rituximab in patients with R/R B cell- NHL.

TTI‑622 (SIRPα/IgG4 Fc)
Like TTI-621, TTI-622 is a soluble SIRPα/Fc variant 
protein containing an IgG4 Fc tail. TTI-622 resulted in 
a statistically significant tumor growth reduction and 
improved survival in both early and delayed treatment in 
DLBCL xenograft tumor model. TTI-622 monotherapy 
showed partial tumor growth inhibition in Burkitt lym-
phoma and in MM xenograft models. Additionally, the 
therapeutic effect was further enhanced when TTI-622 
was combined with daratumumab (an anti-CD38 anti-
body). Importantly, TTI-622 does not bind to human 
RBCs [46, 47].

The data above supports the clinical evaluation of TTI-
622 in combination with other antitumor antibodies in 
hematological malignancies patients. There is an ongo-
ing multicenter, phase I dose-escalation and expansion 
trial of TTI-622 (NCT03530683). TTI-622 was given to 
42 individuals with R/R lymphoma at weekly doses rang-
ing from 0.05 to 18 mg/kg. Treatment-related AEs have 
occurred in 20 (47%) patients, and most AEs have been 
Grade 1 or 2 and reversible. Related AEs of Grade ≥ 3 
intensity has occurred in 7 (16.7%) patients. No signifi-
cant dose relationship was observed between the AEs. 
Preliminary pharmacokinetics data indicated a dose-
dependent increase in exposure after single and repeated 
TTI-622 infusions. According to pharmacodynamics 
results, end-of-infusion CD47 receptor occupancy is 
greater than 60% at 2 mg/kg doses. Objective responses 
occurred in 33% (9/27) of response-evaluable patients at 
doses ranging from 0.8 to 18 mg/kg. Of the nine patients, 
two achieved CR (one in DLBCL and one in cutane-
ous T-cell lymphoma—mycosis fungoides), and seven 
achieved PR (two in cutaneous T-cell lymphoma, two in 
peripheral T-cell lymphoma, two in DLBCL, and one in 
FL) [46, 47].

Based on these preliminary results, TTI-622 is cur-
rently being evaluated in various combination regimens 
in ongoing studies.

ALX148
ALX148 (also known as evorpacept) is a new CD47-
blocking molecule produced by connecting a modified 
SIRPα D1 domain to an inactive human IgG1 Fc. ALX148 
exhibits a high affinity for CD47 in many species, inhib-
its wild-type SIRPα binding, and promotes tumor cell 
phagocytosis by macrophages. ALX148 had little effect 
on normal blood cells in experiments with rodents and 
NHPs. In addition, ALX148 enhanced anti-cancer activ-
ity of obinutuzumab and rituximab (both anti-CD20 
antibodies) in carcinogenesis murine xenograft models 
employing human lymphoma (Z138 and Raji) cell lines 
[59].

Preliminary activity in combination with rituximab 
was observed in R/R CD20-positive B-cell NHL patients 
with no curative treatment. Thirty-three patients were 
enrolled in a phase I clinical trial (NCT03013218) aim-
ing to evaluate the effects of different dosages of ALX148 
in conjunction with rituximab. A total of eleven patients 
received ALX148 (15  mg/kg QW) in combination with 
rituximab and 63.6% of them achieved ORR (three CR 
and four PR). In the fully enrolled safety cohorts, no 
Dose-limiting toxicities (DLTs) have been reported, and 
the MTD of ALX148 combined with rituximab had yet to 
be reached. There have been no reports of dose-limiting 
toxicities (DLTs), and the MTD of ALX148 combined 
with rituximab had not yet been reached. No treatment-
related fatality was documented, and 16/33 patients 
experienced low-grade AEs [40].

IMM01
IMM01 is a recombinant human SIRPα IgG1 fusion pro-
tein that has strong dual-functional anti-tumor activ-
ity through phagocytosis with improved potency upon 
N-glycosylation removal [10]. IMM01 exhibits promis-
ing preclinical characteristics regarding its link between 
receptor occupancy, tumor exposure and efficacy. More-
over, IMM01 shows a unique property of weak human 
erythrocyte conjugation to avoid severe hemolysis [60].

Preliminary results of an FIH phase I study 
(CTR1900024904) in patients with R/R lymphoma 
revealed that 14 patients with R/R lymphoma who had 
failed standard therapies received IMM01 monother-
apy [60]. No DLTs were detected at a dose up to 1 mg/
kg. Most treatment-related side effects were grade 1 
or 2, but one patient had a grade 3 temporary plate-
let count decrease after two hours of drug implication, 
which returned to baseline 24 to 48  h after the initial 
infusion. The ORR was 14.3% (one CR and one PR), and 
two patients had verified SD. According to the research, 
IMM01 demonstrated an outstanding preclinical safety, 
tolerability, and prospective antitumor effectiveness at 
dose up to 1.0 mg/kg.
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CD47 antagonist in the treatment 
of hematological tumors
There are currently 17 CD47 antagonists being tested for 
the treatment of hematological  tumors in clinical trials 
(Table 3). CD47 antagonists with published clinical data 
are listed in Table 4.

CD47 monoclonal antibodies
CC‑90002
Although the potential efficacy of CC-90002 in vari-
ous hematologic malignancies has been demonstrated 
preclinically [65], a phase I study of patients with R/R 
AML and MDS (NCT02641002) was terminated due to 
lack of monotherapy activity and evidence of anti-drug 
antibodies [61]. In that study, no objective response was 
observed in any of the enrolled 28 patients (24 patients 
with AML and 4 with MDS). Of the 15 efficacy-evaluable 
patients with AML, 14 (93.3%) were classified as having 
treatment failure; of the 3 efficacy-evaluable patients with 
MDS, 1 (33.3%) was classified as having treatment failure; 
the remaining patients achieved the best overall response 
of SD. Hematologic improvements in MDS were not 
observed in any of the patient. The reason may be that 
replacing IgG1 with IgG4 significantly weakened the kill-
ing ability of CD47 monoclonal antibodies against tumor 
cells. At present, the research of CC-90002 in hematolog-
ical malignancies is not continued.

Hu5F9‑G4
Preclinical research has demonstrated powerful 5F9 
anti-activity in various hematologic malignancies, par-
ticularly in AML and MDS [66]. In patients with AML/
MDS, 5F9 binds to more than 99% of CD47 receptors in 
peripheral blood and about 90% in bone marrow [67]. 
In a clinical trial (NCT03248479), 53% (8/15) untreated 
AML/MDS patients had a CR or CR with incomplete 
count recovery (CRi) to 5F9 + azacitidine (AZA) (5/10 in 
AML and 3/5 in MDS) [63]. In another clinical research 
(NCT04778397), 56% (10/34) AML patients achieved 
CR/CRi to 5F9 + AZA [68]. This phase Ib trial also indi-
cated that TP53 mutations were present in 65% of the 34 
AML patients examined for efficacy, and that the CR/
CRi rate was greater in patients bearing TP53 mutations 
[68]. Another study included 44 patients (23 newly diag-
nosed, 8 R/R prior to Venetoclax (VEN)-naïve, and 13 
R/R-post-VEN failure). Although the onset of anaemia 
appears early, it can be alleviated. The CR/CRi rate in the 
remaining newly diagnosed patients was 100% (15/15), 
with a CR rate of 87% (13/15). Besides, 7/8 newly diag-
nosed patients with TP53-mutations were evaluated with 
a CR/CRi in 100% (7/7) and CR in 86% (6/7). In R/R prior 
VEN-naïve AML, the CR/CRi rate was 63% (5/8), with 

median overall survival (OS) not reached (range 1.2–9.7). 
In R/R prior VEN failure AML the CR/CRi rate was 27% 
(3/13) with med OS 3.1 (range 0.9–6.5) [64]. Anemia is 
still the most common AEs of 5F9 during the treatment 
of hematological tumors. AML patients have decreased 
hemoglobin and increased blood transfusion demand 
during 5F9 treatment [69].

In 2019, 5F9 was granted fast-track designation by the 
FDA for AML/MDS treatment and orphan drug des-
ignation by the FDA and European Medicines Agency 
for AML treatment. However, Gilead Sciences Inc. 
announced in 2022 that the FDA had placed a partial 
clinical hold on studies evaluating the combination of 
5F9 plus AZA due to an apparent imbalance in investiga-
tor-reported suspected unexpected severe adverse reac-
tions between study arms. It is gratifying that the FDA 
removed the partial clinical hold after reviewing the com-
prehensive safety data from each trial in 2022. Studies 
impacted by the action include NCT04313881 (Phase III, 
MDS), NCT04778397 (Phase III, AML), NCT05079230 
(Phase III, MDS), NCT03248479 (Phase Ib, MDS), and 
NCT04778410 (Phase II, myeloid malignancies and 
only the AZA combination cohorts). Clinical studies on 
MDS/AML include NCT03922477 (plus Atezolizumab), 
NCT04435691 (plus AZA and VEN), NCT04892446(plus 
daratumumab, plus pomalidomide and dexamethasone, 
plus bortezomib and dexamethasone). Except for AZA, 
the combination of 5F9 and other drugs is also undergo-
ing clinical trials. Clinical studies on MDS/AML include 
NCT03922477 (plus Atezolizumab), NCT04435691 (plus 
AZA and VEN), NCT04892446 (plus daratumumab, plus 
pomalidomide and dexamethasone, plus bortezomib and 
dexamethasone).

IBI‑188 (Letaplimab)
Studies evaluating the safety and efficacy of IBI-188 in 
combination with AZA for the treatment of newly diag-
nosed middle- and high-risk MDS and AML are currently 
underway in both China and the United States. Notably, 
IBI-188 in conjunction with AZA for the treatment of 
hematologic disorders in China is undergoing Phase III 
clinical trials. Other Phase I trials include Letaplimab 
in combination with rituximab in advanced lymphoma 
(NCT03717103), with AZA in AML (NCT04485052), 
and with AZA in newly diagnosed higher-risk MDS 
(NCT04485065).

TJ011133 (TJC4, Lemzoparlimab)
TJ011133 is now being tested in patients with R/R AML 
or MDS in a phase I trial (NCT04202003). Four out of 
five patients had treatment-related AEs. Only one AE was 
of Grade 3, while the rest were of Grades 1–2. No DLTs 
or MTDs were detected up to a weekly dose of 10  mg/
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kg. The average receptor occupancy on peripheral T cells 
was 74%, 82%, and 84%, respectively, for 1, 3, and 10 mg/
kg. One main refractory AML patient attained morpho-
logic leukemia-free status following two cycles of 1 mg/
kg TJ011133 therapy [62]. TJ011133 in combination with 
AZA has been approved for a phase III clinical trial in the 
treatment of primary higher risk MDS.

Challenges and future perspectives of CD47/SIRPα 
immune checkpoint for tumors
Challenges
CD47 antagonists have shown some promise results 
in preclinical and clinical studies for treating hemato-
logic tumors and lymphomas. For the foreseeable future, 
CD47/SIRPα will one day become an equally promising 
immunotherapy as PD-1/PD-L1. In order to reach the 
full potential of CD47/SIRPα immune checkpoint-based 
immunotherapy, further studies are necessary. Currently, 
Hu5F9-G4, ALX-148 and TJ011133 are undergoing 
Phase III clinical studies, and it is anticipated that these 
medications will be the first to file marketing applications 
for new drugs.

However, the development of CD47 monoclonal anti-
bodies still faces three major challenges: therapeutic 
effectiveness, safety concerns, and lack of published data. 
CD47 is widely expressed in normal cells, this implies 
that substantial dosages or frequent administration 
may be necessary to achieve effective therapeutic CD47 
blockage. Preclinical studies have shown that 40–60% 
CD47 receptor occupancy is required for the induction 
of phagocytosis [51]. However, extra caution is required 
given that large doses or frequent administration may 
result in treatment-related adverse effects. Besides, when 
tumor cells express both SIRPα and TSP-1 which inhibit 
the CD47-SIRPα interaction [70], the effective dose of 
CD47 antagonist may need to be modified. Additionally, 
sufficient macrophage activation requires triggering of 
Fc receptors, hence proper human IgG should be chosen 
[17]. Even though human IgG1 works better to stimulate 
macrophages, it also causes immune cells to attack RBCs. 
Therefore, most companies have chosen to develop 
human IgG4-type antibodies, which significantly lower 
the antitumor activity [71]. Moreover, CD47-targeted 
bispecific antibodies only act on particular tumor types, 
therefore malignancies must be identified and classified 
to determine the most effective treatment. So far, most 
clinical trials on CD47 antagonists are in phase I and II, 
implying that optimal dosage of dual antibodies requires 
further investigation.

Hematotoxicity, particularly anemia, is the most fre-
quent adverse effect of CD47 inhibitors. Even if there is 
evidence of promising antitumor efficacy, CD47 antago-
nists are associated with anemia since RBCs express a 

substantial amount of CD47. Additionally, activating 
certain epitopes on the Ig variable structural region of 
CD47 has been reported to induce fast T cell apoptosis 
and depletion [72]. Application of CD47 antagonists may 
also cause other safety issues, for example, unexpected 
immunological problems may occur as most immune 
cells express CD47; inhibiting SIRPα may produce nerv-
ous system malfunction, such as aberrant synaptic prun-
ing in microglia neurodegeneration, since SIRPα is highly 
expressed in central and peripheral nervous system cells 
[13, 73]. Finally, due to the sequence similarities of SIRP 
family, CD47 may cross-react with other SIRPs, resulting 
in unintended side effects. CD47 has been found to bind 
to SIRPγ and positively regulate human T cell activation 
and proliferation [5]. Use of CD47 inhibitors may result 
in T-cell function suppression, which deserves further 
investigation in the future.

Last but not least, there is a lack of published data on 
the affinity of CD47 antagonists for checkpoint binding, 
either with pure CD47 and SIRPα protein or on appro-
priate human cells, hindering more insightful analysis on 
this topic.

Future perspectives
In order to increase the efficacy and safety of CD47 antag-
onists, the following strategies of antagonist development 
may emerge in the future (Fig. 4): (1) Using the strategy of 
CD47 antagonist prime and maintenance dosing (e.g., 5F9 
and IBI-188); (2) Modifying the drug structure of CD47 
monoclonal antibody (e.g., AO-176, TJ011133, SRF231, 
and AK117); (3) Fusion protein of CD47/SIRPa combin-
ing with different antibodies, such as CD20, CD19, could 
be of a promising strategy in the immunotherapy target-
ing CD47/SIRPa axis (e.g., IMM0306, NI-1701) [17, 74]; 
(4) Development of SIRPα/Fc fusion protein antibodies; 
(5) Development of small-molecule inhibitors (e.g., RRX-
001, QPCTL antibodies); (6) Introduction of new drug 
delivery methods (e.g., CD47 nanobody [55], plasmid 
vector [75], and CD47/SIRPα blocking peptide [76]); (7) 
Since binding of CD47 to SIRPγ enables T cell activation 
and proliferation [5], blockade of SIRPα-CD47 interac-
tion while preserving SIRPγ binding to CD47 may be a 
strategy for cancer immunotherapy (e.g., SIRP-1 and 
SIRP-2) [77]; (8) SIRPα engages with CD47 in either cis 
or trans behavior in different scenarios. SIRPα expressed 
in macrophages exhibits trans binding to CD47 that are 
expressed in other types of ‘self ’ cells, leading to local 
SIRPα accumulation and inhibition of ‘self ’cell engulf-
ment including the tumor cells [35, 78]. On the other 
hand, CD47 expressed on macrophages has the potential 
to modulate phagocytosis through a cis interaction with 
SIRPα that is also expressed on macrophages. Blockade 
of the cis CD47-SIRPα interaction could result in hyper 
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phagocytosis [79]. Therefore, extra consideration needs 
to be taken in the development of CD47 antagonists as 
they may lead to different clinical outcomes; (9) Improve-
ment of the tumor selectivity of CD47 antagonists may 
also be a future strategy (e.g., a PH-dependent CD47 anti-
body) [80].

In conclusion, given that CD47 antagonists enable 
cancer cells to escape macrophage-mediated phagocy-
tosis, inhibiting the CD47/SIRPα axis is a potential can-
cer treatment strategy. A deeper understanding of the 
mechanisms and processes by which tumor cells avoid 
immune clearance and improving CD47 antagonist 
administration routes would contribute to developing 
effective and safe antitumor medicines. The latest clini-
cal research advances and detailed information were pre-
sented in tables to aid the readers for quick search of the 
contents of interest.

Abbreviations
ADCC  Antibody-dependent cell-mediated cytotoxicity
AE  Adverse event

ALL  Acute lymphoblastic leukemia
AML  Acute myeloid leukemia
AZA  Azacitidine
CAILS  Composite assessment of index lesion severity
CD  Cluster of differentiation
CDC  Complement-dependent cytotoxicity
CLL  Chronic lymphocytic leukemia
CR  Complete response rate
CRi  CR with incomplete blood count recovery
CTR   The China drug trials registry
DLBCL  Diffuse large B cell lymphoma
DLT  Dose-limiting toxicity
FDA  Food and Drug Administration
FIH  First-in-human
FL  Follicular lymphoma
ITIM  Immunoreceptor tyrosine-based inhibitor motif
MDS  Myelodysplastic syndrome
MM  Multiple myeloma
MTD  Maximum tolerated dose
NCT  The US national clinical trials registry
NHL  Non-Hodgkin lymphoma
NHP  Non-human primate
ORR  Overall response rate
OS  Overall survival
PD-1  Programmed cell death receptor-1
PD-L1  Programmed cell death ligand-1
PR  Partial response
QPCTL  Glutaminyl-peptide cyclotransferase-like

Fig. 4 Future strategies for developing CD47 antagonists. Abbreviation: CD47, cluster of differentiation 47; SIRP, signal-regulatory protein
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QW  Every week
R/R  Relapsed/refractory
RBC  Red blood cells
SD  Stable disease
SHP  Src homology phosphatase
SIRP  Signal regulatory protein
SIRPα  Signal regulatory protein alpha
TSP-1  Thrombospondin-1
VEN  Venetoclax
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