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Abstract 

Background  It has been believed that traditional handcrafted radiomic features extracted from magnetic resonance 
imaging (MRI) of tumors are normally shallow and low-ordered. Recent advancement in deep learning technology 
shows that the high-order deep radiomic features extracted automatically from tumor images can capture tumor 
heterogeneity in a more efficient way. We hypothesize that MRI-based deep radiomic phenotypes have significant 
associations with molecular profiles of breast cancer tumors. We aim to identify deep radiomic features (DRFs) from 
MRI, evaluate their significance in predicting breast cancer (BC) clinical characteristics and explore their associations 
with multi-level genomic factors.

Methods  A denoising autoencoder was built to retrospectively extract 4,096 DRFs from 110 BC patients’ MRI. Visu-
alization and clustering were applied to these DRFs. Linear Mixed Effect models were used to test their associations 
with multi-level genomic features (GFs) (risk genes, gene signatures, and biological pathway activities) extracted from 
the same patients’ mRNA expression profile. A Least Absolute Shrinkage and Selection Operator model was used to 
identify the most predictive DRFs for each clinical characteristic (tumor size (T), lymph node metastasis (N), estrogen 
receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status).

Results  Thirty-six conventional radiomic features (CRFs) for 87 of the 110 BC patients provided by a previous study 
were used for comparison. More than 1,000 DRFs were associated with the risk genes, gene signatures, and biological 
pathways activities (adjusted P-value < 0.05). DRFs produced better performance in predicting T, N, ER, PR, and HER2 
status (AUC > 0.9) using DRFs. These DRFs showed significant powers of stratifying patients, linking to relevant bio-
logical and clinical characteristics. As a contrast, only eight risk genes were associated with CRFs. The RFs performed 
worse in predicting clinical characteristics than DRFs.

Conclusions  The deep learning-based auto MRI features perform better in predicting BC clinical characteristics, 
which are more significantly associated with GFs than traditional semi-auto MRI features. Our radiogenomic approach 
for identifying MRI-based imaging signatures may pave potential pathways for the discovery of genetic mechanisms 
regulating specific tumor phenotypes and may enable a more rapid innovation of novel imaging modalities, hence 
accelerating their translation to personalized medicine.
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Background
Breast cancer (BC) is the most commonly diagnosed 
cancer and the second leading cause of cancer death 
for women [1]. BC is a polygenetic disease, and the risk 
of developing it is influenced by multiple genes. Many 
efforts in genomics were made to identify BC-associ-
ated biomarkers so that better clinical decisions could 
be made. Genomics has improved today’s medicine 
tremendously, but techniques like the next generation 
sequencing (NGS) used in genomic experiments are 
costly, invasive, and only representing the information 
of a small tumor tissue bulk. Magnetic resonance imag-
ing (MRI) is widely involved in disease management [2] 
due to its non-invasive and ability to view the entire 
tumor and surrounding parenchyma [3]. However, tra-
ditional human experience-based imaging diagnosis is 
criticized for its subjectivity. Therefore, radiomics was 
developed to extract high-throughput image features 
using advanced mathematical algorithms.

The integration of radiomics with genomics led to 
the radiogenomics. Burnside et  al. reported 36 con-
ventional radiomic features (CRFs) extracted from BC 
patients’ MRI [4]. These CRFs were further evaluated 
as having genomic significance [5, 6]. However, since 
these CRFs were also obtained under radiologists’ prior 
knowledge, their objectivity was still doubted. In fact, 
most radiogenomic studies were done in a semiau-
tomatic way. There is a pressing need to explore fully 
automatic algorithms in radiogenomics.

Deep learning (DL) is very successful in solving com-
puter vision problems. Recently, DL has been intro-
duced to radiomics. Li et al. developed a DL model to 
automatically extract deep radiomic features (DRFs) 
from glioma MRI in a supervised way [7]. How-
ever, in exploratory research, it is more reasonable to 
extract DRFs in an unsupervised way. Because features 

extracted in a data-driven manner using unsupervised 
approaches have higher flexibility of representing data 
intrinsic patterns than supervised hypothesis-driven 
methods [3]. It is likely that a supervised model will 
force the features to just represent the label informa-
tion used to train the model, instead of representing 
data intrinsic patterns. Li et al. further proved that their 
DRFs were associated with glioma tumor grading [7]. 
However, they didn’t perform further genomic explora-
tion of their DRFs.

DL-based radiogenomics was unexplored, especially 
in current BC studies. In this work, we hypothesize that 
unsupervised DL-based auto- MRI DRFs have significant 
associations with genomic profiles of BC, and these DRFs 

could predict patients’ clinical characteristics. We also 
hypothesize that the visualized DRFs could be explained 
semantically.

Material and methods
Data sources
Four datasets (MRI, CRFs, genomic data, and clinical 
data) of the same BC cohort were reused in this retro-
spective study. MRI of 137 patients were downloaded 
from The Cancer Image Archive (TCIA) [8]. This was 
all we can get from TCIA when this study was executed. 
Thirty-six CRFs for 87 of 137 patients were obtained 
from The Cancer Genome Atlas (TCGA) Breast Phe-
notype Research Group. Details of these 36 CRFs could 
be found in the original paper [4]. Genomic and clini-
cal data were download from TCGA [9]. T1-weighted 
dynamic enhanced images (T1WDEI) from 1.5-T GE 
MRI machine were included in this study. Each patient 
has 2 to 8 post-contrast phases. We selected the spe-
cific phase that was used to obtain the CRFs so that the 
extracted DRFs are comparable. Twenty-seven cases 
that do not have T1WDEI from 1.5-T GE machine or 
do not have matched gene expression profiles were 
excluded. The exclusion criteria are shown in Fig. 1. The 
distribution of age and 5 clinical characteristics of the 
remained 110 patients are shown in Table 1.

Extraction of DRFs from BC MRI data
A stacked convolutional denoising autoencoder (DA) [10] 
was build using Keras [11] (Fig. 2). DA is an unsupervised 
DL model that is widely used to extract intrinsic features 
from data[10]. We first scaled pixel values to the range of 
0 to 1 in a min–max normalization way to improve com-
putational efficiency. Then, images were interrupted with 
a normally distributed random noise as shown below:

Here noise_level was 0.05, which means the noise we 
added into the data follows a normal distribution with 
mean equals to 0 and standard deviation equals to 0.05. 
Rectified Linear Unit (ReLU) and mean square error 
(MSE) were chosen as the activation function and the 
loss function. Adam was selected as the optimizer [12]. 
Learning rate, batch size, and epoch were set to 0.1, 64, 
and 100, respectively.

The dataset was split into train/test sets in a ratio of 
80%:20%. After the model was well trained (loss was con-
verged) and tested (no overfitting), we applied the model 
to the whole dataset and extracted the output of the last 
encode hidden layer, which encodes the information 

noisy_data = raw_data + noise_level × random.normal (0, 1, size (raw_data))
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of the image to the most abstraction level, as our DRFs. 
There are 4,096 DRFs in this layer, which come from 
16 kernels, and each kernel has a dimension of 16 × 16 
(more details can be found in the source code).

Normalization and visualization of DRFs
Quantile normalization was performed to make the DRFs 
comparable among samples [13]. Heatmap was employed 
to create the kernel-wise feature maps. Hierarchical 
clustering [14] and t-Distributed Stochastic Neighbor 
Embedding (t-SNE) [15] were used to cluster the normal-
ized DRFs. Complete linkage function in the hierarchical 
clustering process and visual-guided criteria by analysis 
of the dendrogram were used to decide the number of 
clusters in the heatmap. T-SNE were done at both patient 
and image levels. Patient-level features were calculated as 
the mean of image-level features. After the patient-level 
t-SNE map was generated, colors were manually assigned 
to the visible clusters and the same colors were assigned 
to image-level t-SNE map to see if they have consistent 
patterns. We also colored the patient-level map with 
clinical characteristics to see if these clusters could be 
explained by existing clinical knowledge.

Classification of clinical characteristics using radiomic 
features
We performed supervised classification analysis 
using radiomic features to predict the status of the 5 

clinical characteristics of BC (tumor size (T), lymph 
node metastasis (N), estrogen receptor (ER), progester-
one receptor (PR), and human epidermal growth factor 
receptor 2 (HER2) status) at image level. We did this 
separately for the learned DRFs and the downloaded 
traditional RFs. Since there are many predictors in the 
classification model, overfitting is likely to occur. We 
built a least absolute shrinkage and selection operator 
(LASSO) regression model using the R packages bigl-
asso [16]. LASSO is a regularization technique that can 
be added into the fitting process to reduce the magni-
tude of coefficients so that overfitting could be avoided. 
The formula of the multiple linear regression is shown 
in the Eq. 1. The LASSO fitting is shown in the Eq. 2.

Here X is each of the radiomic features (RFs) (CRFs 
and DRFs). Y is a given clinical characteristic. N is the 
sample size. p is the number of the RFs in the feature 
vector. � is a hyperparameter used to control the level 
of penalty [16].

Models were trained on a randomly selected sample 
set with 70% of the total samples and performance was 
evaluated using a test set with the remaining 30% of the 
total samples. 100 � s were tried and the performances 
of the models with different � s in the training set were 

(1)
Yi = β0 + β1Xi1 + β2Xi2 + · · · + βpXip i=1, 2, . . ., N

(2)
�̂ lasso = arg min�

1

N

∑N

i=1

(
−yi log(�jxi

)
− (1 − yi) log(1 − �jxi)) + �

∑p

j=1
|�j |

Fig. 1  A flowchart showing the downloading and preprocessing procedures of the three data sources used in this study. Bold items were done by 
us, while RNA-Seq alignment and quantification were done by the TCGA database platform
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measured using a metric called area under the receiver 
operating characteristic curve (AUC_ROC) in a fivefold 
cross-validation way.

Radiogenomic analysis
Radiogenomic analysis aims to evaluate the associa-
tion between genomic profiles and DRFs. In this study, 
we focused on three levels of genomic features (GFs) 
extracted from the mRNA gene expression profiles of 
the 110 BC patients:

1.	 Gene expressions of 288 well-validated BC risk genes 
collected from previous studies [17, 18].

2.	 6 commonly used BC gene signatures calculated 
using R package “genefu” [19]: Oncotype DX, Endo-
Predict, Prosigna (rorS), MammaPrint (GENE70), 
GENIUS and PIK3CA-GS.

3.	 182 KEGG (Kyoto Encyclopedia of Genes and 
Genomes) pathway activity scores [20] calculated 
using the Single Sample Gene Set Enrichment Analy-
sis (ssGSEA) function [21].

We performed association analyses between each RFs 
(DRFs and CRFs) and each of those GFs using a Linear 
Mixed Effect (LME) Model, which can model and analyze 
the complex and structured data with multi-levels [22]. In 
our case, multiple images can be obtained from each individ-
ual patient. We implemented the analysis using the R pack-
age nlme [23]. The formula of the LME model is as follows.

Here X is a given RFs, G is a given genomic feature and 
i is the ith images. Since our DRFs are at image-level and 
each of the 110 patients has multiple images, the DRFs 
were not independent with each other. Therefore, to 
address the effect caused by the dependence of the DRFs, 
the term μZ was introduced to simulate the variations 
coming from the patient differences. Significant asso-
ciations were selected based on the cut-off of adjusted 
P-values < 0.05 [24].

Classification of gene signatures and TILs
In clinical, gene signatures (pik3cags, endo, gene70, 
genius, oncotypedx, rorS) and tumor-infiltrating lympho-
cytes (TILs) are very important for BC patients’ disease 
management and predicting the gene signature status 
and TILs status are believed to be much harder than 
predicting the basic clinic information (ER, PR, HER2, 
T, and N status). We calculated the 6 TILs (B cell, T cell 
CD4, T cell CD8, Neutrophil, Macrophage, Dendritic 
cell) using TIMER method [25, 26]. We then binarized 
the 6 gene signatures (pik3cags, endo, gene70, genius, 
oncotypedx, rorS) and 6 TILs (B cell, T cell CD4, T cell 
CD8, Neutrophil, Macrophage, Dendritic cell) using the 
first quantile as cut-off (top 25% were defined as posi-
tive, while the other 75% were defined as negative). We 
then built a DNN and a XGboost using R packages “nnet” 
and “xgboost”, respectively, to classify the binarized gene 
signatures/TILs based on the CRFs/DRFs. The perfor-
mance of the models was evaluated in a training–test-
ing way and was measured by AUC (more details about 
the hyperparameters could be found in the source code 
of DNN/XGboost models at https://​github.​com/​qianl​
iu1219/​DA_​BRCA_​radio​genom​ics).

Results
Visualization of DRFs
To understand the potential biological and clinical mean-
ing of the DRFs, we randomly selected several images 

(3)Xi = β0 + β1Gi + µZi i=1, 2, . . ., N

Table 1  Participant Characteristics. Tumors with a size smaller 
than 2  cm were assigned to the T-negative group, while those 
with size larger than 2  cm were set to the T-positive group. 
Node metastasis was coded as N-positive/N-negative simply 
according to whether there were lymph nodes invasion or not. 
HER2, ER, and PR were binary already in the original data file we 
downloaded from TCGA​

a The 11 missing values for HER2 variable were not included in the clinical 
association analysis and the t-SNE map coloring

Parameter Value

No. of participants 110

  No. of women 110

Age

  Min 29

  Max 82

  Mean 53.76

Standard deviation 12.07

Pathological tumor size (T)

  No. of positive 70

  No. of negative 40

Pathological lymphatic metastasis (N)

  No. of positive 54

  No. of negative 56

ER

  No. of positive 86

  No. of negative 24

PR

  No. of positive 77

  No. of negative 33

HER2

  No. of positive 21

  No. of negative 78

  No. of NAa 11

https://github.com/qianliu1219/DA_BRCA_radiogenomics
https://github.com/qianliu1219/DA_BRCA_radiogenomics
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(Fig. 3a is showing one of them) and visualized their 16 
kernels using heatmaps (Fig.  3b). The 16 kernels are in 
high abstraction level and have learned different infor-
mation from the original image. For example, kernels 
#3, 4, 5, 6, 12 highlight the edge of breast. Kernel #12 has 
almost absolutely reversed the signals in the diaphragm 
and tumor regions, but it puts a large weight on the bot-
tom edge of the breast that is close to the tumor region, 
and there are some unclear patterns within the breast, 
chest, and lung regions. Kernel #5 highlights the edge of 
the breast without any bias. #7 only keeps the high pixel 
value regions including tumor and diaphragm. More 
interestingly, almost half of the heatmaps (kernels # 9, 10, 
11, 13, 14, 15, 16) emphasize the tumor regions. Kernel # 
9 and kernel #15 are smooth. Kernel #13 emphasizes the 
tumor regions while lowers the values of other regions 
inside and outside the breast, but it keeps reasonable val-
ues for the diaphragm region. Kernels #9, 14, 15, and 16 
have the similar patterns as #13 but highlight the tumor 
regions in different magnitudes. Kernel #15 puts the simi-
lar values to the breast and diaphragm and slight weaker 

values to the chest. Kernels #14 and #16 are almost the 
same as #13 with a dimming in breast region.

Unsupervised clustering analysis using the DRFs
The hierarchical clustering result of the normalized 
DRFs is shown in Fig.  4a. Patients were clustered into 
roughly two groups with unbalanced sizes. One has only 
14 patients while the other has 96 patients. However, 
according to the sidebar labels, these two clusters do 
not enrich any of the five clinical characteristics (Fisher’s 
exact test, P-value > 0.05).

At the patient-level t-SNE map (Fig.  4b) and image-
level t-SNE map (Fig. 4c), patients were clearly clustered 
into 5 groups. And the clustering patterns are consistent. 
However, we also did not observe the enrichment of any 
clinical characteristics in these five groups (Fisher’s exact 
test, P-value > 0.05). These 5 groups may have some other 
clinical differences (such as survival), but since all the 110 
patients are still alive according to the latest follow-up 
information in TCGA, we do not have enough informa-
tion to perform the survival analysis.

Fig. 2  The DA model used in this study to extract deep radiomic features. There are two convolutional layers and two max-pooling layers in the 
encode phase, two convolutional layers, and two upsampling layers in the decode phase. For the (None, n, n, m), “None” is the batch size which we 
used to load the samples into the model, (n, n) in the middle indicates the number of features in each kernel. m is the number of kernels
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Classification of clinical characteristics using DRFs
As the hyperparameter � increases, different numbers of 
RFs remain in the LASSO regression model to predict the 
clinical characteristics. Figure  4d shows the prediction 
performance of DRFs for the clinical characteristics using 
these LASSO models. Figure 4e shows the prediction per-
formance of CRFs. Using LASSO models with proper � , the 
DRFs performed very well (AUC could reach 0.90 or larger) 
in predicting the five clinical characteristics, which means 
the DRFs might be able to represent the combined infor-
mation of these clinical characteristics. CRFs performed 
well in predicting pathological tumor size and ER status, 
however, their abilities of predicting other three clinical 
characteristics were weaker (AUC < 0.8).

Association analysis between GFs and DRFs
After multiple testing correction, 1,774 out of the 4,096 DRFs 
were significantly associated with 213 of the 288 BC risk 
genes (Fig. 5a). On the contrary, only 14 CRFs were associ-
ated with 8 risk genes (Fig. 5d). The details of the 14 CRFs 
and the 8 risk genes are shown in the Fig. 5f. Two of the six 
gene signatures, EndoPredict and Prosigna (rorS) scores, are 
significantly associated with 848 and 1,395 DRFs (Fig.  5b), 
respectively. 1,739 of the 4,096 DRFs are significantly associ-
ated with 166 of the 182 KEGG pathways (Fig. 5c). CRFs have 
no associations with gene signatures and KEGG pathways 
activities. Totally there are 2,028 DRFs significantly associated 
with 381 (213 risk genes, 2 gene signatures and 166 biological 
pathways) GFs. The details of the top 30 DRFs that have the 

most significant association with the GFs are shown in Fig. 5e. 
Taking the top 1 DRFs in the first row as an example, the 
DRFs “fea_4043” is significantly associated with 55 BC risk 
genes, two gene signatures, and 89 KEGG pathways. Hence, 
there are 146 GFs significantly associated with the “fea_4043” 
located in kernel #16. Interestingly, these significant GFs are 
mainly associated with the DRFs from kernels #13 to #16.

We further calculated the number of significantly asso-
ciated GFs with the kernel-level DRFs as shown in Table 2. 
The results in Table  2 are based on all 2,028 significant 
DRFs. As can be seen, these DRFs are mainly from kernel 
#12 to #16. Kernel #13 to #16 are considered as genetic 
information enriched kernels, because comparing with 
the first several kernels (e.g., #1 to #12), they all learned 
more abstract and representative information from their 
original images, which captured the tumor regions, put 
different weights to the surrounding tissues, and partially 
kept the signals for tissues far away from tumors. And 
among these top 5 DRF kernels (#12 to #16), #12 is special 
as it emphasizes the edge information, while kernels #13 
to #16 more focus on the tumors and surrounding tissues.

The number of significantly associated DRFs for each GFs 
was also calculated. We reported the top 5 BC risk genes (RP11-
57H14.3, FIBP, ATP6AP1L, OVOL1, RP11-400F19.8) that are 
significantly associated with the largest number of DRFs, the 
2 significant gene signatures (EndoPredict, Prosigna), and the 
top 5 KEGG pathways (Fatty acid metabolism, Insulin signaling 
pathway, Phenylalanine metabolism, RNA degradation, Tyros-
ine metabolism) that are significantly associated with the largest 

Fig. 3  Visualization of kernel-level deep radiomic features (DRFs) by heatmaps. The values of the DRFs are presented by the magnitude of the 
colors in the heatmap. a A randomly selected raw image as an example. This MR image is a sagittal view of the body. Tumors are circled out. b The 
16 kernel-wise heatmaps of the DRFs for the same image shown in a. Kernels #3, 5, 6, 12 are highlighting the edge of breast. #7 is showing the high 
value regions. Kernels #10, 11, 13, 14, 16 emphasize the tumor regions. #9 is smoothy and blur
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number of DRFs (Table 3). As we can see, the DRFs associated 
with these top GFs are mainly from kernels #11 to #16.

Classification of gene signatures and TILs
The performance (ROC and AUC) of the DNN and 
XGBoost classifiers could be found in Supplementary 
Fig.  1. Generally speaking, DRFs performed better than 
CRFs in predicting gene signatures (pik3cags, endo, 

gene70, genius, oncotypedx, rorS) and TILs (B cell, T cell 
CD4, T cell CD8, Neutrophil, Macrophage, Dendritic 
cell) using both DNN and XGBoost models.

Discussion
We developed a DL model which could automatically 
extract DRFs from BC MRIs. These DRFs performed 
very well in predicting BC clinical characteristics, gene 

Fig. 4  Unsupervised and supervised analysis results of the deep radiomic features (DRFs). a Unsupervised hierarchical clustering analysis of the 
DRFs. Columns are the 110 patients; rows are the 4,096 DRFs. Clinical information is shown in the sidebar. T refers to the tumor size. For breast 
tumors, bigger than 2 cm are T-positive. N refers to node status, which is positive when the tumor cell spreads into lymph nodes. ER, PR, HER2 refer 
to estrogen receptor status, progesterone receptor status, and human epidermal growth factor receptor 2 status. Patients seem to be clustered into 
2 groups, but these two groups have no obvious clinical difference. b t-SNE visualizes the patient-level DRFs. Each dot is one patient. Different colors 
are marked in different patient-level clusters manually. c t-SNE visualizes the image-level DRFs. Each dot is one image. We first tracked the dots at 
image-level t-SNE map to patient-level, and then colored them using the same colors as what we used in coloring the patient-level t-SNE map. 
d The supervised LASSO model prediction performance of deep radiomic features under different � s. Different colors represent different clinical 
characteristics. The x-axis represents the number of deep radiomics features given different � in the LASSO models. e The supervised LASSO model 
prediction performance of traditional radiomic features under different � s. Different colors represent different clinical characteristics. The x-axis 
represents the number of traditional radiomic features given different � in the LASSO models. Please note that the feature number is not going 
up to the total number of features (4,096 or 36) because there were always a lot of features been regularized out under different � s. The y-axis 
represents the corresponding area under the curve (AUC) which is a metric used to assess the performance of the prediction. An AUC equals to 1 
means a perfect prediction
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signatures and TILs, and have significant association 
with many GFs. We also visualized the extracted DRFs 
and made potential interpretations of the identified radi-
omic-genomic associations. 

Among the top 5 most significant BC risk genes in 
the association tests, the RP11-57H14.3 and the RP11-
400F19.8 are processed transcript biotype. They do not 
code proteins and their biological functions are not clear 
[27, 28]. However, they were observed in several cancer 
related studies [29, 30]. FIBP, ATP6AP1L, and OVOL1 
are protein-coding genes. The acidic fibroblast growth 
factor intracellular-binding protein [31] and the subunit 
ATPase [32] coded by FIBP and ATP6AP1L are related 
to cell metabolism and growth. The zinc finger protein 
[33] coded by OVOL gene could influence cell prolifera-
tion and malignant transformation by adjusting the MYC 
transcription, which is a well-known oncogene [34]. 
Please be noted that we only discussed the top 5 most 

significant risk genes. There are 213 such risk genes in 
total, gene ontology analysis or gene set enrichment anal-
ysis could be considered as potential future directions to 
explore them.

EndoPredict is a gene signature predicting the likeli-
hood of distant recurrence in ER-positive and HER2-
negative BC patients treated with adjuvant endocrine 
therapy [35]. Currently, the cost of a EndoPredict test 
is around 1,500USD [35]. Prosigna (rorS) score could 
be used to predict BC risk and it is calculated from 
PAM50, which is a set of proliferative genes [36]. A 
Prosigna test costs around 2,000 USD currently [37]. 
Progsigna and EndoPredict are all associated with ker-
nel #11, 12, 13, 14 according to our radiogenomic asso-
ciation analyses, which indicates that they may capture 
the similar radiomic information and our DRFs may 
serve as surrogate to represent the information cap-
tured by these two commercialized gene signatures. 

Fig. 5  The results of radiogenomic association analyses between the radiomic features (RFs) and the genomic features (GFs). a the association 
results of 288 breast cancer risk genes and 4,096 deep radiomic features. b the association results of the 6 breast gene signatures with 4,096 deep 
radiomic features (DRFs). c the association results of the 182 KEGG pathway activity scores with 4,096 DRFs. d the association results of 288 breast 
cancer risk genes and 36 conventional radiomic features (CRFs). The association of gene signatures and KEGG pathway activity scores are not shown 
here because no significant associations have been identified. For a-d, the X-axis is the RFs. The Y-axis is the GFs. Red ones are significant ones. e 
the top 30 that are significantly associated with the GFs. Rows are the top 30 DRFs that have genomic significance (ranked by the frequency of the 
associated GFs). The first column is the ID of DRFs. The next three columns are the number of significant associations between the given DRF and 
the three sets of GFs, respectively. The fifth column is the accumulated number of significant associations that the given DRF has. The last column is 
the kernel where the given DRF is. f 14 CRFs are significantly associated with the 8 risk genes. Rows are the 14 CRFs that have genomic significance 
(ranked by the frequency of the associated GFs). The first column is the names of the CRFs. The second column is the risk genes. The third column is 
the adjusted p-values of the association analyses
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Several metabolism pathways stand out in our radiog-
enomic association analysis, such as Fatty acid metab-
olism, Phenylalanine metabolism, and Tyrosine 
metabolism pathways. These pathways are all reported 
in BC studies [38], which could be used to support the 
rationality of our DRFs.

The proposed denoise autoencoder is unsupervised 
and can extract intrinsic features from the data itself 
without any external label information. This is because 
our primary goal is to perform radiogenomic analysis, 
that is, the association between genomic features and the 
radiomic features. In contrast, a supervised classification 
model may be forced to learn features that are only rep-
resenting the label information. We want the proposed 
radiogenomic biomarkers can capture as much clinical/
genomic information as possible. Thus, an unsupervised 
method (e.g. autoencoder) may be better for data-driven 
feature extraction than a supervised approach. Since 
using the extracted features to predict clinical character-
istics is our secondary goal in the study, we also explored 
to use the unsupervised deep radiomic features from the 
denoise autoencoder combined with the LASSO. As a 
contrast, we built 5 pure supervised classification mod-
els using the famous EfficientNet (with and without pre-
training on ImageNet) [39] for the 5 binarized clinical 
characteristics (ER, PR, HER2, T, N). For the supervised 
analysis, the dataset was split into train/test sets in a ratio 
of 80%:20%. Learning rate and epoch were set as 0.002 
and 100. The losses were converged successfully for all 
trainings. The performances (AUCs) on test set is shown 
in Supplementary Table  1, which is comparable to the 
proposed unsupervised deep radiomic features combined 
with the LASSO method.

There are some limitations in the study. Firstly, 
although we discussed the potential biological meaning 
of the learned DRFs, the mechanisms of why those GFs 
are associated with certain DRF kernels are still unclear. 
Currently, there are no similar studies and interpreta-
tions to explain the biology meaning of the DRFs. Also, 
there has no good visualization tools for DRFs. The heat-
map visualization we used for our kernel-wise DRFs were 
based on randomly selected samples, which may have 
limited generalization ability. Secondly, the sample size of 
the study is relatively small, so it is a bit hard to explain 
the clustering patterns of the patients identified by the 
tSNE. The patterns may be explainable in the future if 
the sample size for the breast cancer radiogenomic study 
is large enough. Thirdly, there is no other publicly avail-
able breast cancer radiogenomic dataset which can be 
used to conduct this kind of radiogenomic experiments. 
Thus, the extracted features cannot be replicated in 
another independent dataset at this stage. More valida-
tion needs to be done in the future when an independent 

Table 2  The frequency of the genomic associations with the 
kernel-level deep radiomic features (DRFs). Rows are each 
radiomic feature kernel. The first column is the kernel ID. The 
next three columns are the number of significant genomic 
features that are associated with the DRFs mapped in the given 
kernel. The last column is the accumulated number of significant 
genomic features that are associated with the DRFs within the 
given kernel. It should be noted that each kernel has 256 DRFs

Kernel Risk genes Gene 
signatures

KEGG Pathways Frequency

13 3251 227 7848 11,326

14 3374 208 7423 11,005

15 3039 190 6776 10,005

16 3093 178 6650 9921

12 2510 203 6853 9566

11 2176 194 5934 8304

10 2045 185 5307 7537

9 1964 183 4706 6853

8 1852 163 3988 6003

7 1358 118 2752 4228

6 725 85 1601 2411

5 577 75 1399 2051

1 654 59 1158 1871

4 496 67 961 1524

2 358 56 890 1304

3 384 52 793 1229

Table 3  The genomic features that are associated with the 
largest number of deep radiomic features (DRFs). We only report 
the top five significant genomic features in each of the three 
categories (risk genes, gene signatures and KEGG pathways)

Genomic features No. of 
significant 
DRFs

Top 5 radiomic 
feature kernels 
(ordered)

Risk genes

  RP11-57H14.3 1118 13, 14, 15, 12, 16

  FIBP 1050 13, 14, 15, 10, 11

  ATP6AP1L 1038 13, 14, 16, 10, 15

  OVOL1 1019 13, 14, 10, 16, 11

  RP11-400F19.8 1017 13, 14, 16, 12, 15

Gene signatures

  EndoPredict 848 13, 14, 12, 15, 11

  Prosigna (rorS) 1395 13, 14, 12, 11, 10

KEGG pathways

  Fatty acid metabolism 1269 12, 10, 11, 13, 9

  Insulin signaling pathway 1243 13, 12, 11, 14, 10

  Phenylalanine metabolism 1217 12, 13, 10, 9, 11

  RNA degradation 1211 12, 13, 11, 14, 15

  Tyrosine metabolism 1205 12, 9, 10, 11, 13
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cohort is available. Finally, lack of publicly available nor-
mal or benign breast MRI data also limited the findings 
of this study to be transferred to clinical applications. The 
comparison of the features extracted from the MRI of BC 
patients vs. features extracted from the normal or benign 
breast MRI should be performed to highlight the breast 
cancer-specific features.

Conclusion
In summary, DL-based radiogenomics in BC was well-
explored in this study. DRFs performed very well in pre-
dicting BC clinical characteristics and have significant 
association with many GFs. Potential biological interpre-
tations were discussed to increase the transparency. The 
proposed method is fully automatic and could be trans-
ferred to any other image type as well as other diseases.
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