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Abstract 

Purpose  To assess the association between plasma procalcitonin concentration at hospital admission and the risk of 
50-day in-hospital mortality among patients with community-acquired bloodstream infections.

Methods  We carried out a retrospective, observational cohort study with all consecutive patients with bacteriologi‑
cally confirmed community-acquired bloodstream infections hospitalized between 2006 and 2012. We aimed to 
assess the association between plasma procalcitonin at admission and 50-day in-hospital mortality. Patients were 
included in the analysis if they had undergone a blood culture test within 48 hours of hospitalization with a concomi‑
tant procalcitonin assay (time < 12 hours between the two tests). Inclusion in the study began on the day of hospital 
admission, and each patient was followed until death, discharge from the hospital, or last known follow-up in the 
50 days following hospital admission. The endpoint was the occurrence of all-cause in-hospital mortality during the 
50 days following hospital admission.

Results  During the 7-year study period, 1593 patients were admitted to one of the healthcare facilities of the 
University Hospital of Nancy from home or through the emergency department and had positive blood cultures 
and concomitant procalcitonin assays. Among the patients, 452 met the selection criteria and were analyzed. In 
ROC analysis, procalcitonin at baseline was significantly associated with 50-day in-hospital mortality, with an optimal 
threshold > 4.24 ng/mL. A baseline procalcitonin > 4.24 ng/mL was independently associated with an increased risk of 
in-hospital mortality (multivariable logistic regression: odds ratio, 2.58; 95% CI, 1.57–4.25; P = 0.0002; Cox proportional 
hazard regression: hazard ratio, 2.01; 95% CI, 1.30–3.11; P = 0.002). In sensitivity analyses, baseline procalcitonin quar‑
tiles were independently associated with 50-day in-hospital mortality (multivariable logistic regression: odds ratio, 
1.47; 95% CI, 1.17–1.85; P = 0.001; Cox proportional hazard regression: hazard ratio, 1.31; 95% CI, 1.07–1.60; P = 0.008). 
The independent associations between baseline procalcitonin and the risk of 50-day in-hospital mortality were main‑
tained after adjusting for C-reactive protein and sepsis status at admission.
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Conclusion  Our data provide the first evidence of the usefulness of plasma procalcitonin at admission as a risk-strat‑
ifying biomarker for predicting 50-day in-hospital mortality among patients with community-acquired bloodstream 
infections.

Keywords  Procalcitonin, Risk-stratifying biomarker, 50-day in-hospital mortality, Community-acquired bloodstream 
infections

Introduction
Sepsis is a leading cause of death worldwide, with more 
than 48 million incident cases and a mortality rate of up 
to 50% [1–4]. Community-acquired infections contribute 
to 70% of cases of sepsis and represent one of the lead-
ing causes of hospitalization in intensive care units [5, 
6]. Bloodstream infections are diagnosed in a high pro-
portion of patients with community-acquired sepsis and 
septic shock [7, 8]. Bloodstream infections represent a 
significant source of infectious disease morbidity and 
mortality worldwide, with an estimated overall incidence 
of 43 to 101 per 100,000 and a mortality rate of 15 to 30% 
[8–15]. A prospective, multicenter, observational study 
identified a bloodstream infection in 20% of patients 
admitted to intensive-care units with community-
acquired sepsis [16]. The presence of bloodstream infec-
tions at admission was associated with an 86% increased 
risk of mortality in the ICU [16].

According to current guidelines, risk stratification and 
prognostication are paramount in patients with septic 
conditions, as high-risk patients may benefit from ear-
lier clinical interventions [1, 6, 17, 18]. In a previous large 
cross-sectional study using the Nancy Biochemical Data-
base [19–22], we analyzed more than 35,000 consecu-
tive patients who underwent concomitant procalcitonin 
assays and blood cultures for suspected bloodstream 
infections. We demonstrated that plasma procalcitonin 
was useful for excluding bloodstream infections with 
negative predictive values ranging from 98.9 to 99.9%, 
according to pathogen categories [19].

To date, no study has assessed the usefulness of plasma 
procalcitonin at admission to predict in-hospital mor-
tality among patients with community-acquired blood-
stream infections (CA-BSIs). Using data from the Nancy 
Biochemical Database [19–22], we evaluated the useful-
ness of procalcitonin at admission as a risk-stratifying 
biomarker for predicting 50-day in-hospital mortality 
among patients with CA-BSIs.

Methods
Study population
All consecutive patients hospitalized in 67 health-
care departments of medicine, surgery, and obstetrics 
between January 1, 2006, and December 31, 2012, were 

considered for inclusion in the study. These patients were 
identified using the ‘Nancy Biochemical Database’, a pro-
spectively maintained electronic database that collects 
the biochemical results of consecutive patients hospital-
ized in 67 healthcare departments of medicine, surgery, 
and obstetrics at the University Hospital of Nancy [19–
22]. The “Nancy Biochemical Database” is registered at 
the French National Commission on Informatics and 
Liberty, CNIL, under record #1763197v0. The Ethics 
Committee of the University Hospital of Nancy approved 
the study.

Study design, setting, and inclusion criteria
We carried out a retrospective, observational cohort 
study on all consecutive patients with a bacteriologi-
cally confirmed bloodstream infection hospitalized 
between 2006 and 2012. Inclusion in the study began 
on the day of hospital admission, and each patient was 
then followed until death, discharge from the hospital, 
or last known follow-up in the 50 days following hospi-
tal admission. The inclusion criteria were i) admission 
to one of the healthcare facilities of the University Hos-
pital of Nancy between January 1, 2006, and December 
31, 2012; ii) admission from home or through the emer-
gency department; iii) positive blood cultures from blood 
drawn within 48 hours after hospital admission; and iv) 
concomitant blood culture and procalcitonin assay with 
an interval of less than 12 hours between the two tests. 
The exclusion criteria were i) nosocomial bloodstream 
infection diagnosed when one or more cultures of blood 
drawn at least 48 hours after admission yielded a patho-
genic organism [10]; ii) blood culture contamination 
defined by the detection of microorganisms classically 
considered “potential contaminants found in blood cul-
tures” according to the definition of Lee et  al. [23]; and 
iii) no available follow-up data in the 50 days following 
hospital admission. The study was observational, i.e., all 
clinical assessments, biochemical explorations, and blood 
cultures were conducted at the discretion of the physi-
cians of each healthcare department as part of a stand-
ard assessment for suspected bloodstream infection. The 
data collected and the methods used for procalcitonin 
assays and blood cultures are reported in the Additional 
file 1.
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Study aim and endpoint
The study aimed to assess the association between 
plasma procalcitonin concentration at hospital admission 
(considered baseline) and in-hospital mortality during 
the 50 days following hospital admission. The endpoint 
was the occurrence of all-cause in-hospital mortality dur-
ing the 50 days following hospital admission.

Statistical analysis
All quantitative variables are described as medians and 
percentiles [interquartile ranges (IQRs), 25–75th per-
centiles], and the qualitative variables are described 
as percentages and 95% confidence intervals (95% 
CIs). Comparing baseline plasma procalcitonin values 
between patients according to the occurrence of death 
was performed using the Wilcoxon Mann–Whitney 
test. We explored the optimal threshold of procalcitonin 
associated with the occurrence of death by performing a 
receiver operating characteristic (ROC) analysis, accord-
ing to DeLong et  al. [24], using the study endpoint as a 
classification variable. The optimal threshold was defined 
using the Youden index J. Bias-corrected and accelerated 
(BCa)-bootstrap intervals after 10,000 iterations were 
performed for the Youden index and its associated values 
[25].

In univariate analyses, we compared patient charac-
teristics according to the presence or absence of 50-day 
in-hospital mortality (study endpoint) using the Wil-
coxon Mann–Whitney test for continuous variables and 
the Chi-squared test or Fisher’s exact test, as appropriate, 
for categorical variables. All the significant variables in 
univariate analyses were integrated into a multivariable 
logistic regression model to identify independent pre-
dictors of 50-day in-hospital mortality using the forced 
entry or the stepwise method. We used age, pathogen 
genera identified in blood cultures, C-reactive protein, 
and sepsis status at admission as covariates for adjust-
ment. All variables with P  < 0.2 were included in the 
model and the variables with P < 0.05 were retained in the 
model. The results are shown as odds ratios (ORs) and 
95% CIs for each predictor and the percentage of cases 
correctly classified by the logistic regression model. We 
assessed model discrimination using ROC analysis and 
the percentage of cases correctly classified by the model. 
We assessed the model’s goodness of fit using Nagelkerke 
R2 and Cox & Snell R2 statistics [26]. Using binary probit 
regression, we evaluated the association between the pro-
pensity score predicted by the logistic regression model 
and the risk of 50-day in-hospital mortality.

We also evaluated the association between plasma 
procalcitonin at baseline and 50-day in-hospital mortal-
ity using univariate and multivariable survival analyses. 

We estimated cumulative probabilities of survival using 
the Kaplan–Meier method. Survival time was calculated 
from the date of hospital admission. Surviving patients 
were censored at hospital discharge or the last known 
follow-up in the 50 days following hospital admission. 
Follow-up times were calculated and expressed in days. 
Univariate analysis was performed using the log-rank 
test to compare patient subgroups according to the 
ROC-defined threshold of plasma procalcitonin at base-
line. The results were expressed as hazard ratios (HRs), 
95% CIs, and the associated P values. In multivariable 
analyses, we assessed the association between the ROC-
defined threshold of plasma procalcitonin at baseline 
and in-hospital mortality using Cox proportional haz-
ards regression analysis with the forced entry or the 
stepwise method, with age, pathogen genera identified 
in blood cultures, C-reactive protein, and sepsis status 
at admission as covariates for adjustment. All variables 
with P < 0.2 were included in the model, and those with 
P < 0.05 were retained. The results are expressed as HRs, 
95% CIs, and the associated P values. We assessed the 
Cox proportional hazards regression model discrimina-
tion between positive and negative cases using C-index 
statistics by calculating the area under the ROC curve of 
the prognostic indices generated [27].

In sensitivity analyses, we used quartile-transformed 
procalcitonin values to assess the association between 
this 4-class variable and 50-day in-hospital mortality. We 
assessed the association between crude rates of 50-day 
in-hospital mortality and procalcitonin quartiles using 
the chi-squared and chi-squared test for trend for univar-
iate analysis and logistic regression in multivariable anal-
ysis, as reported above. We also assessed the association 
between procalcitonin quartiles and in-hospital mortality 
using the log-rank test and the log-rank test for trend for 
univariate analysis and Cox proportional hazards regres-
sion in multivariable analysis. All statistical analyses were 
conducted with JASP (version 0.14.1) and MedCalc (ver-
sion 20.010) based on a two-sided type I error with an 
alpha level of 0.05.

Results
Description of the population
Between January 1, 2006, and December 31, 2012, 1593 
patients were admitted to one of the healthcare facili-
ties of the University Hospital of Nancy from home or 
through the emergency department and had positive 
blood cultures with concomitant procalcitonin assay. 
Among them, 838 had positive cultures from blood 
drawn within 48 hours of admission. After excluding 
patients with blood culture contaminations (n  = 364), 
474 patients were classified as having a CA-BSI. Among 
them, 452 had available follow-up data in the 50 days 
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following hospital admission and were included in the 
analysis (Supplemental Fig. S1). The median age was 
61 years (IQR, 31–74), and the proportion of males was 
60.6% (274/452) (Table  1). Seventy percent (316/452) of 
patients had a bloodstream infection with Staphylococcus 
aureus, Escherichia coli, or Streptococcus spp. (Table  1). 
During the first 50 days following hospital admission, 88 
patients died (19.5%; 95% CI, 15.8–23.1). The median 
duration of hospital stay in the whole cohort was 12 days 
(IQR, 6–22) and was significantly lower among patients 
in the 50-day mortality subgroup (5 days, [IQR, 1–15]) 
than among those without 50-day mortality (13 days 
[IQR, 7–23]).

Predictors of 50‑day in‑hospital mortality in univariate 
analysis
In univariate analysis, age, procalcitonin, C-reactive 
protein, lactate, and cardiac troponin I were signifi-
cantly associated with an increased risk of 50-day 

in-hospital mortality. In contrast, blood culture posi-
tivity for Streptococcus spp. was significantly asso-
ciated with a reduced risk of 50-day in-hospital 
mortality (Table  1). In the overall cohort, the propor-
tion of patients with sepsis on admission was 20.4% 
(92/452). This proportion did not differ between 
patients with or without 50-day mortality (18.2% 
vs. 20.9%, P  = 0.57) (Table  1). In univariate survival 
analysis, a troponin level at admission > 0.05 ng/mL 
(AUROC, 0.691; 95% CI, 0.592–0.778; P = 0.0001) and 
a lactate level at admission > 2.4 mmol/L (AUROC, 
0.643; 95% CI, 0.559 to 0.722; P = 0.001) were signifi-
cantly associated with an increased risk of in-hospital 
mortality (HR, 2.56; 95% CI, 1.33–4.89; P = 0.005 and 
HR, 3.14; 95% CI, 1.76–5.62; P = 0.0001, respectively) 
(Supplemental Fig. S2). However, cardiac troponin I 
and lactate were available in only 29% (203/542) and 
45% (203/452) of the patients, respectively, and could 
not be used in multivariable analyses.

Table 1  Characteristics of the 452 consecutive patients with community-acquired bloodstream infection included in the study

Note. IQR interquartile range, 95% CI: 95% confidence interval, spp. species

*Wilcoxon Mann-Whitney test (patients with vs. without 50-day mortality)

†Chi-squared test or Fischer’s exact test, as appropriate (patients with vs. without 50-day mortality)

‡Low sample size

Characteristic Whole study
(n = 452)

Patients with 50-day
mortality (n = 88)

Patients without 50-day
mortality (n = 364)

P value

Age — N, median (IQR) 452 61 (31–74) 88 65 (55–78) 364 60 (22–72) 0.0002*

Male gender — n/N, % (95% CI) 274/452 60.6% (56.1–65.1) 54/88 61.4% (51.0–71.7) 220/364 60.4% (55.4–65.5) 0.90†

Procalcitonin (ng/mL) — N, median (IQR) 452 2.54 (0.60–11.75) 88 7.40 (1.94–19.88) 364 2.15 (0.490–10.57) < 0.0001*

Sepsis at admission — n/N, % (95% CI) 92/452 20.4% (16.6–24.1) 16/88 18.2% (10.0–26.4) 76/364 20.9% (16.7–25.1) 0.57†

C-reactive protein (mg/L) — N, median (IQR) 326 138.9 (65.6–224.3) 59 166.5 (102.7–264.0) 267 130.0 (63.0–210.9) 0.006*

Lactates (mmol/L) — N, median (IQR) 203 1.7 (1.1–3.1) 54 2.5 (1.5–4.1) 149 1.6 (1.075–2.9) 0.002*

Cardiac troponin I (ng/mL) — N, median (IQR) 133 0.11 (0.04–0.43) 44 0.29 (0.07–1.80) 89 0.08 (0.04–0.23) 0.0003*

Gram staining, fungi — n/N, % (95% CI)

  Gram-positive 229/452 50.7% (46.0–55.3) 43/88 48.9% (38.2–59.5) 186/364 51.1% (45.9–56.3) 0.72†

  Gram-negative 203/452 44.9% (40.3–49.5) 41/88 46.6% (36.0–57.2) 162/364 44.5% (39.4–49.6) 0.72†

  Fungi 20/452 4.4% (2.5–6.3) 4/88 4.5% (0.1–8.9) 16/364 4.4% (2.28–6.5) 0.99†

Microorganisms — n/N, % (95% CI)

  Staphylococcus aureus 123/452 27.2% (23.1–31.3) 29/88 33.0% (22.9–43.0) 94/364 25.8% (21.3–30.3) 0.18†

  Escherichia coli 117/452 25.9% (21.8–29.9) 20/88 22.7% (13.8–31.7) 97/364 26.6% (22.1–31.2) 0.45†

  Streptococcus spp. 76/452 16.8% (13.4–20.3) 6/88 6.8% (1.5–12.2) 70/364 19.2% (15.2–23.3) 0.005†

  Enterococcus spp. 30/452 6.6% (4.3–8.9) 8/88 9.1% (3–15.2) 22/364 6.0% (3.6–8.5) 0.30†

  Klebsiella spp. 29/452 6.4% (4.2–8.7) 10/88 11.4% (4.6–18.1) 19/364 5.2% (2.9–7.5) 0.04†

  Pseudomonas spp. 27/452 6.0% (3.8–8.2) 5/88 5.7% (0.7–10.6) 22/364 6.0% (3.6–8.5) 0.90†

  Fungi 20/452 4.4% (2.5–6.3) 4/88 4.6% (0.1–9.0) 16/364 4.4% (2.3–6.5) 0.95†

  Enterobacter spp. 15/452 3.3% (1.7–5) 5/88 5.7% (0.7–10.6) 10/364 2.8% (1.1–4.4) 0.17†

  Bacteroides spp. 7/452 1.6% (0.4–2.7) 1/88 1.1% (0–3.4) 6/364 1.7% (0.3–3.0) —‡

  Acinetobacter spp. 5/452 1.1% (0.1–2.1) 0/88 0% (—) 5/364 1.4% (0.2–2.6) —‡

  Citrobacter spp. 3/452 0.7% (0–1.4) 0/88 0% (—) 3/364 0.8% (0–1.8) —‡
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Association between baseline procalcitonin level 
and 50‑day in‑hospital mortality
The median procalcitonin value at baseline was signifi-
cantly higher among patients in the 50-day mortality 
subgroup than among those without 50-day in-hospital 
mortality (7.40 ng/mL, IQR: 1.94–19.88 vs. 2.15 ng/mL, 
IQR: 0.49–10.57; P  < 0.0001) (Table  1). In ROC analy-
sis, procalcitonin at baseline was significantly associ-
ated with 50-day in-hospital mortality with an optimal 
threshold > 4.24 ng/mL (AUROC, 0.640; 95% CI, 0.578 to 
0.700; P  < 0.0001). The 50-day in-hospital mortality rate 

among patients with baseline procalcitonin > 4.24 ng/
mL was 28.9% (95% CI, 22.4–35.5%) vs. 12.6% (95% CI, 
8.6–16.6%) among those with a baseline procalcitonin 
≤ 4.24 ng/mL (absolute difference, + 16.3%; 95% CI, 
8.8–24.0%; P  < 0.0001) (Fig.  1A). In multivariable logis-
tic regression analysis, a baseline procalcitonin > 4.24 ng/
mL was independently associated with an increased 
risk of 50-day in-hospital mortality (OR, 2.58; 95% CI, 
1.57–4.25; P = 0.0002) (Table 2, Supplemental Table S1, 
and Supplemental Fig. S3). The independent association 
between a baseline procalcitonin level > 4.24 ng/mL and 

Fig. 1  A 50-day in-hospital mortality rate in the whole cohort and according to baseline plasma procalcitonin threshold defined in receiver 
operating characteristic (ROC) analysis (> 4.24 ng/mL); B 50-day in-hospital mortality rate according to baseline plasma procalcitonin quartiles
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the risk of 50-day in-hospital mortality, in logistic regres-
sion analysis, was maintained even after adjusting for 
C-reactive protein (mg/L) and sepsis status at admission 
(OR, 2.63; 95% CI, 1.37–5.03; P = 0.004) (Supplemental 
Table S2).

In the survival analysis, the mean survival time in the 
patients without in-hospital mortality was 37 days (95% 
CI, 35–39 days). The survival probabilities in patients 
without in-hospital mortality at Days 10, 20, 30, and 40 
were 85.4% (standard error [SE], 1.8), 78.7% (SE, 2.4), 
69.7% (SE, 3.5), and 63.4% (SE, 4.4), respectively (Sup-
plemental Fig. S4A). Patients with a baseline procal-
citonin > 4.24 ng/mL (ROC-defined threshold) had a 
significantly increased risk of in-hospital mortality (HR, 
2.28; 95% CI, 1.49–3.49; P = 0.0001) (Supplemental Fig. 
S4B and Supplemental Tables S3 and S4). In multivariable 
Cox proportional hazard regression analysis, a baseline 
procalcitonin > 4.24 ng/mL was independently associated 
with an increased risk of in-hospital mortality (HR, 2.01; 
95% CI, 1.30–3.11; P = 0.002) (Table 3). The independent 

association between a baseline procalcitonin > 4.24 ng/
mL and the risk of in-hospital mortality in Cox regres-
sion analysis was maintained even after adjusting for 
C-reactive protein (mg/L) and sepsis status at admission 
(HR, 2.11; 95% CI, 1.20–3.70; P  = 0.01) (Supplemental 
Table S5).

Sensitivity analyses
We performed a post hoc sensitivity analysis using 
baseline procalcitonin quartiles, considered a 4-class 
variable (Supplemental Table S6). In patients in the 1st 
(range, 0.05–0.59 ng/mL), 2nd (range, 0.60–2.55 ng/
mL), 3rd (range, 2.56–11.64 ng/mL), and 4th (range, 
11.65–315.80 ng/mL) procalcitonin quartiles at base-
line, the 50-day in-hospital mortality rates were 9.7% 
(4.18–15.3%), 16.7% (9.7–23.6%), 21.4% (13.7–29.1%), 
and 30.1% (21.5–38.7%), respectively (Chi-squared test, 
P = 0.001; Chi-squared test for trend, P = 0.0001). When 
compared to the 1st procalcitonin quartile, patients in 
the 2nd, 3rd, and 4th quartiles had the following absolute 

Table 2  Association between plasma procalcitonin level at admission and all-cause 50-day mortality in multivariable logistic 
regression analysis

Note. AUROC area under the receiver operating characteristic curve, PCT procalcitonin

*Logistic regression using the forced entry method
a AUROC of the prognostic indices generated by the logistic regression model to discriminate between positive and negative cases

Covariate Odds ratio 95% CI P value* Percent of cases 
correctly classified

AUROCa

(95% CI)

Model #1: Plasma PCT, ROC-defined threshold – 81% 0.721 (0.677–0.762)

  Procalcitonin > 4.24 ng/mL 2.58 1.57 to 4.25 0.0002 – –

  Age (years) 1.02 1.01 to 1.03 0.0007 – –

  Pathogen genus, Streptococcus 0.52 0.20 to 1.30 0.16 – –

  Pathogen genus, Staphylococcus 1.59 0.91 to 2.78 0.10 – –

  Pathogen genus, Klebsiella 1.92 0.81 to 4.54 0.14 – –

Model #2: Plasma PCT quartiles (continuous) – 80% 0.711 (0.669–0.754)

  Procalcitonin, quartiles (continuous) 1.47 1.17 to 1.85 0.001 – –

  Age (years) 1.02 1.01 to 1.03 0.0007 – –

  Pathogen genus, Streptococcus 0.52 0.21 to 1.31 0.17 – –

  Pathogen genus, Staphylococcus 1.55 0.89 to 2.70 0.12 – –

  Pathogen genus, Klebsiella 1.93 0.82 to 4.55 0.13 – –

Model #3: Plasma PCT, 4th vs. 1st to 3rd quartiles – 81% 0.702 (0.658–0.744)

  Procalcitonin, 4th quartile 2.12 1.26 to 3.54 0.004 – –

  Age (years) 1.02 1.01 to 1.03 0.0004 – –

  Pathogen genus, Streptococcus 0.49 0.20 to 1.24 0.13 – –

  Pathogen genus, Staphylococcus 1.54 0.89 to 2.69 0.13 – –

  Pathogen genus, Klebsiella 2.07 0.88 to 4.88 0.10 – –

Model #4: Plasma PCT, 4th vs. 1st quartile – 80% 0.723 (0.660–0.780)

  Procalcitonin, 4th quartile 3.30 1.53 to 7.12 0.002 – –

  Age (years) 1.01 1.00 to 1.02 0.08 – –

  Pathogen genus, Streptococcus 0.47 0.13 to 1.72 0.25 – –

  Pathogen genus, Staphylococcus 1.35 0.62 to 2.97 0.45 – –

  Pathogen genus, Klebsiella 1.93 0.48 to 7.78 0.36 – –
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differences in 50-day in-hospital mortality: + 7% (95% CI, 
− 1.9–16.0%), + 11.7% (2.2–21.216%), and + 20.4% (95% 
CI, 10.1–30.3%), respectively. In multivariable logistic 
regression analysis, baseline procalcitonin quartiles were 
independently associated with 50-day in-hospital mor-
tality with an OR of 1.47 (95% CI, 1.17–1.85; P = 0.001) 
per quartile increment (OR, 2.12; 95% CI, 1.26–3.54; 
P = 0.004 for the comparison between 4th and 1st to 3rd 
quartiles and OR, 3.30; 95% CI, 1.53–7.12; P = 0.002 for 
the comparison between the 4th and the 1st quartiles). 
These results were similar after adjusting for C-reac-
tive protein (mg/L) and sepsis status at admission (OR, 
1.38; 95% CI, 1.01 to 1.87; P = 0.04; OR, 1.92; 95% CI, 
1.02–3.60; P = 0.04; and OR, 3.41; 95% CI, 1.33 to 8.73; 
P = 0.01, respectively) (Supplemental Table S2).

In survival analysis, baseline procalcitonin quartiles 
were significantly associated with in-hospital mortal-
ity (log-rank test, P  = 0.01; log-rank test for trend, 

P  = 0.0009) (Supplemental Table S7 and Fig.  2). The 
univariate HRs for in-hospital mortality of patients 
in the 2nd, 3rd, and 4th procalcitonin quartiles, when 
compared to those in the 1st quartile, were 1.62 (95% 
CI, 0.89–2.93), 2.10 (95% CI, 1.15–3.81), and 2.87 (95% 
CI, 1.58–5.19), respectively (Supplemental Table S8). 
In multivariable Cox proportional hazard regression 
analysis, baseline procalcitonin quartiles were inde-
pendently associated with an increased risk of in-hos-
pital mortality (HR, 1.31; 95% CI, 1.07–1.60; P = 0.008) 
(Table  2). Patients in the 4th quartile of procalcitonin 
had an increased risk of in-hospital mortality when 
compared to those in the 1st to 3rd quartiles (HR, 1.62; 
95% CI, 1.05–2.50; P = 0.03) or those in the 1st quartile 
only (HR, 2.44; 95% CI, 1.21–4.94; P = 0.01) (Table 2). 
These results were similar after adjusting for C-reac-
tive protein (mg/L) and sepsis status at admission (HR, 
1.35; 95% CI, 1.06–1.72; P  = 0.02; HR, 1.73; 95% CI, 
1.13–2.66; P = 0.01; and HR, 3.08; 95% CI, 1.32–7.22; 
P = 0.01, respectively) (Supplemental Table S5).

Table 3  Association between plasma procalcitonin level at admission and all-cause in-hospital mortality in multivariable Cox 
proportional-hazards regression

Note. AUROC area under the receiver operating characteristic curve, PCT procalcitonin

*Cox proportional-hazards regression using the forced entry method
a AUROC of the prognostic indices generated by the Cox proportional-hazards regression model to discriminate between positive and negative cases

Covariate Hazard ratio 95% CI P value* AUROCa

(95% CI)

Model #1: Plasma PCT, ROC-defined threshold – 0.688 (0.643–0.730)

  Procalcitonin > 4.24 ng/mL 2.01 1.30–3.11 0.002 –

  Age (years) 1.01 1.00–1.02 0.02 –

  Pathogen genus, Streptococcus 0.50 0.21–1.18 0.12 –

  Pathogen genus, Staphylococcus 1.13 0.70–1.83 0.62 –

  Pathogen genus, Klebsiella 1.57 0.79–3.13 0.20 –

Model #2: Plasma PCT quartiles – 0.708 (0.664–0.750)

  Procalcitonin, quartiles 1.31 1.07–1.60 0.008 –

  Age (years) 1.01 1.00–1.02 0.02 –

  Pathogen genus, Streptococcus 0.51 0.22–1.22 0.13 –

  Pathogen genus, Staphylococcus 1.11 0.69–1.80 0.66 –

  Pathogen genus, Klebsiella 1.61 0.81–3.21 0.18 –

Model #3: Plasma PCT, 4th vs. 1st to 3rd quartiles – 0.699 (0.655–0.741)

  Procalcitonin, 4th quartile 1.62 1.05–2.50 0.03 –

  Age (years) 1.01 1.00–1.02 0.01 –

  Pathogen genus, Streptococcus 0.49 0.21–1.16 0.10 –

  Pathogen genus, Staphylococcus 1.13 0.70–1.83 0.61 –

  Pathogen genus, Klebsiella 1.71 0.86–3.41 0.13 –

Model #4: Plasma PCT, 4th vs. 1st quartile – 0.716 (0.652–0.774)

  Procalcitonin, 4th quartile 2.44 1.21–4.94 0.01 –

  Age (years) 1.01 0.99–1.02 0.31 –

  Pathogen genus, Streptococcus 0.50 0.15–1.70 0.27 –

  Pathogen genus, Staphylococcus 0.98 0.50–1.93 0.95 –

  Pathogen genus, Klebsiella 1.51 0.52–4.39 0.45 –
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Discussion
We report the most comprehensive study to evaluate 
the usefulness of procalcitonin at admission for pre-
dicting 50-day in-hospital mortality among patients 
with CA-BSIs and provide the first evidence regard-
ing its usefulness as a risk-stratifying biomarker. The 
crude 50-day mortality rate was 28.9% in patients with 
an admission procalcitonin level > 4.24 ng/mL and was 
2.3-fold lower (12.6%) among patients with a procalci-
tonin level ≤ 4.24 ng/mL. Sensitivity analyses and dose-
response probit regression confirmed a progressive 
increase in the risk of 50-day in-hospital mortality across 
procalcitonin quartiles, with a 47% increase in mortality 
risk for each procalcitonin quartile increment at admis-
sion. These results were corroborated by multivariable 
survival analyses, which reported a hazard ratio of 1.31 
for in-hospital mortality risk per each procalcitonin 
quartile increment at admission.

To date, no study has investigated the usefulness of 
plasma procalcitonin at admission to predict in-hospital 
mortality among patients with CA-BSIs. Only one study 
assessed the association between procalcitonin and mor-
tality among 239 patients with community-acquired bac-
teremia [28]. However, in this study, no multivariable 
analysis was carried out to estimate the risk after adjust-
ing for potential confounding factors, and no survival 
analyses were performed.

Bloodstream infections represent a leading cause of 
infectious disease morbidity and mortality worldwide 
[9–15]. Timely treatment affects both the financial bur-
den and the clinical outcome of bloodstream infections, 
significantly benefiting survival [29, 30]. In this setting, 
the availability of a fast peripheral blood prognostic bio-
marker could help stratify the risk of mortality associ-
ated with bloodstream infections and adapt optimized 
diagnostic and therapeutic strategies. Procalcitonin is 
a sepsis-related biomarker that is routinely assayed in 
an automated manner with defined quality standards 
and a run time of less than 30 minutes [19, 31–33]. In 
healthy subjects, procalcitonin blood concentrations are 
extremely low. However, they can increase 1000-fold 
following bacterial or parasitic infections [19, 34–36]. 
Following endotoxin treatment of baboons, it has been 
shown that procalcitonin is produced by several tis-
sues, mainly the liver and kidneys, as soon as 6 h after 
the injection [34, 37]. Several studies have evaluated the 
usefulness of procalcitonin as a prognostic marker in 
patients with sepsis. A meta-analysis of 23 studies con-
cluded that an elevated procalcitonin concentration was 
strongly associated with all-cause mortality in patients 
with sepsis, with a pooled relative risk of 2.60 [38]. How-
ever, the cutoff values used were highly heterogeneous, 
which precludes any possibility of translating the results 
of this meta-analysis into clinical practice [38].

Fig. 2  Kaplan–Meier analysis reporting the probability of survival without in-hospital mortality in the 452 studied patients according to baseline 
plasma procalcitonin quartiles
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Community-acquired infections contribute to 70% of 
cases of sepsis, which is associated with a mortality rate 
of up to 50% [1–3]. In 2001, early goal-directed therapy 
was shown to allow for early diagnosis and treatment of 
sepsis in 2002 through the Surviving Sepsis Campaign 
and the adoption of the Early Management Bundle for 
Severe Sepsis/Septic Shock (SEP-1) in 2015 [17]. Nev-
ertheless, three randomized trials failed to demonstrate 
the benefit of early goal-directed therapy in patients with 
sepsis. In a retrospective cohort study that assessed the 
association of the early management bundle for severe 
sepsis/septic shock (SEP-1) with mortality and organ dys-
function, among 4108 patients with community-onset 
sepsis, serum lactate level testing within 3 hours of time 
0 was associated with reduced mortality [1]. Similarly, 
our results prove that an initial procalcitonin assay could 
represent an additional tool as a risk-stratifying bio-
marker among patients with CA-BSIs. This assay can be 
conducted in a short time and is compatible with rapid 
decision-making, particularly in the setting of sepsis 
management, according to current guidelines to prevent 
unnecessary deaths and disability [6, 17].

Our study has several strengths. First, we report the 
first evidence regarding the usefulness of procalcitonin 
as a risk-stratifying biomarker in patients with CA-BSIs. 
Second, we used standardized data from the Nancy Bio-
chemical Database [19–22]. This prospectively main-
tained electronic database increases the biological 
findings of consecutive patients hospitalized in all health-
care departments of medicine, surgery, and obstetrics 
at the University Hospital of Nancy. Third, in our study, 
procalcitonin was measured using the BRAHMS PCT-
sensitive Kryptor method, which was used in most stud-
ies investigating procalcitonin use and offered a lower 
detection limit of 0.02 ng/mL and functional assay sensi-
tivity of 0.06 ng/mL [39]. We acknowledge several poten-
tial limitations of the study that should be considered in 
interpreting our results. First, our results are based on a 
retrospective, observational cohort study and should be 
further validated in independent prospective cohorts. 
However, we report the most comprehensive study to 
address the knowledge gap regarding the usefulness of 
procalcitonin as a risk-stratifying biomarker in patients 
with CA-BSIs. Second, we excluded patients with periph-
eral blood culture contamination based on a widely 
accepted definition without formally excluding the risk of 
true bacteremia for classic contaminant microorganisms. 
However, true bacteremias for classical contaminants 
are mainly observed among patients with healthcare-
associated and hospital-acquired bloodstream infections 
rather than those with CA-BSIs [7]. Furthermore, we 
recently showed that patients with blood culture contam-
ination had a plasma procalcitonin level of < 0.1 ng/mL 

[40]. Third, given the study design and the architecture 
of the Nancy Biochemical Database, we could not deter-
mine the final diagnosis or the source of the infection in 
the patients included in the study. Fourth, our study did 
not assess the Sepsis-related Organ Failure (SOFA) and 
Acute Physiologic Assessment and Chronic Health Eval-
uation Scoring System II (APACHE II) scores to refine 
the prognostic performance of procalcitonin for mortal-
ity prediction since these data were not available in the 
Nancy Biochemical Database. In a prospective, observa-
tional study on 53 patients with septic shock, procalci-
tonin levels were correlated with the APACHE II score, 
and the decrease in inaugural procalcitonin was associ-
ated with a higher probability of survival [41].

In conclusion, we report the most comprehensive study 
that provides proof-of-concept evidence of the usefulness 
of plasma procalcitonin as a risk-stratifying biomarker 
for predicting 50-day in-hospital mortality among 
patients with CA-BSIs. Future prospective studies should 
investigate the added value of procalcitonin in assessing 
patients with CA-BSIs to improve risk prediction and 
provide personalized therapeutic management.
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