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Abstract 

It is known that metabolic reprogramming (MR) contributes to tumorigenesis through the activation of processes 
that support survival of cells, proliferation, and grow in the tumor microenvironment. In order to keep the tumor 
proliferating at a high rate, metabolic pathways must be upregulated, and tumor metabolism must be adapted to 
meet this requirement. Additionally, immune cells engage in metabolic remodeling to maintain body and self-health. 
With the advent of immunotherapy, the fate of individuals suffering from non-small cell lung cancer (NSCLC) has been 
transformed dramatically. MR may have a profound influence on their prognosis. The aim of this review is to sum-
marize current research advancements in metabolic reprogramming and their impact on immunotherapy in NSCLC. 
Moreover, we talk about promising approaches targeting and manipulating metabolic pathways to improve cancer 
immunotherapy’s effectiveness in NSCLC.
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Introduction
As the main reason for cancer-associated deaths, uni-
versally non-small cell lung cancer (NSCLC) has seen 
a remarkable increase in incidence rate for the past few 
years [1, 2]. According to histological and pathological 
classification, lung cancer is mainly divided into lung 
adenocarcinoma (LUAD), lung squamous cell carci-
noma (LUSC), large cell carcinoma and other rare types 
[3]. With its low 5-year survival rate and high mortality 
rate, advanced non-small cell lung cancer keeps being a 
big challenge of oncology [4]. To date, treatment options 
available for NSCLC incorporate surgery, adjuvant ther-
apy, chemotherapy, radiotherapy, and immunotherapy. 
Nevertheless, effective therapies of NSCLC, especially for 
advanced stage cancers, is still lacking [5]. Consequently, 
to create alternative therapies for such cancer is in urgent 
need. Compared with traditional treatments, cancer 

immunotherapy represented by PD-1 blockade has led 
to a model transition in cancer treatment owing to better 
survival, less side effects and wider scope of application 
[6, 7]. So far, two monoclonal antibodies blocking PD-1 
(nivolumab, pembrolizumab) together with two block-
ing PD-L1 (atezolizumab, durvalumab) gain the approval 
from the FDA to be applied to first-line regimens without 
prior platinum-containing chemotherapy and for second-
line regimens after failure of platinum-containing chem-
otherapy [8–11].

However, responses to immune checkpoint blockade 
(ICB) therapy are not widespread, with many patients 
displaying primary resistance to ICB monotherapy [12]. 
In some patients, ICB treatment may even result in 
immune activation against specific organs immunother-
apeutic-induced adverse events (irAE). In general, irAEs 
colocalize with barrier tissues (gut, lungs, and skin) as 
well as with endocrine tissues (pancreas and thyroid), 
but importantly, the most common irAE differ from 
drug to drug [13, 14]. It can be challenging to use com-
bined ICB in clinical settings due to its higher number 
of side effects. Studies are underway to develop effective 
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approaches to minimize IRAEs without compromising 
anti-tumor immunity.

With further understanding of immunoregula-
tory mechanisms in the range of the tumor microen-
vironment (TME)，the answers to these questions 
will emerge. A number of elements acting in the TME 
restrain the curative activities of ICBs. Various findings 
suggest that immune cells, like Myeloid-derived sup-
pressor cells (MDSC), Tumor-associated macrophages 
(TAMs), Tumor associated dendritic cells (TADCs) have 
different potentials in predicting response to anti-PD-
(L)1 therapy in patients with NSCLC, respectively. For 
instance, the immune response to immunotherapy was 
significantly improved when PMN-MDSC levels were 
high or the CD8/PMN-MDSC ratio was low [15]. While, 
TIM-3 expression on lymphocytes and early accumu-
lation of M-MDSC with (Lin*CD33+ CD14 + CD15* 
HLA-DR*) is associated with resistance to PD-1 block-
ade [16]. Additionally, the ratio of circulating Treg to 
G-MDSCs may also affect the response to nivolumab, 
since patients with a high proportion of circulating 
Tregs and low proportion of G-MDSCs show improved 
PFS in patients with NSCLC [17]. In NSCLC, mature 

DCs are located exclusively within TLSs and are asso-
ciated with a good prognosis [18]. High DC-LAMP1+ 
mature DCs and High stromal CD561 cells were corre-
lated with prolonged survival in patients with NSCLC 
[19, 20]. At the same time, High CD1a1+LCs together 
with CD14+CD68low interstitial DCs were both associ-
ated with longer DSS [21].

Here, we review how the metabolic pattern in lung 
cancer is remodeled with transformation and malignant 
progression and how this gives rises to immune escape 
and resistance to ICBs. We also conclude how these dis-
coveries are applied to strengthen the efficacy of ICBs in 
patients with NSCLC.

Glucose metabolism in NSCLC
Glucose metabolism of tumor cells
Otto Warburg’s pioneering work displayed in the 1920s 
that tumor cells consume more glucose than normal 
cells. The phenomenon went by the name of the aero-
bic glycolysis or Warburg effect (Fig. 1) [22]. With the 
physiological condition in oxygenated environment, 
glucose is metabolized by cells by the course of glyco-
lysis, the tricarboxylic acid (TCA) cycle and oxidative 

Fig. 1  Metabolic control of glucose by cancer cells. Mitochondria are primarily involved in glycosis and the TCA cycle in glucose metabolism. The 
pathways in tumor cells are generally altered compared to those of normal cells. Figure created using BioRe​nder.​com
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phosphorylation (OXPHOS), and eventually molecular 
oxidation is completed. This process which is depend-
ent on oxygen is known as oxidative phosphorylation, 
and 32–38 ATP molecules are ultimately produced 
from a glucose molecule. However, pyruvate, being con-
verted to lactate, is the byproduct of glycolysis. Merely 
two molecules of ATP are contained in per mol of glu-
cose. For cancer cells，this metabolic shift includes an 
upregulation of biosynthetic along with bioenergetic 
pathways in order to maintain high proliferative rate 
and adapt metabolism (shown in Fig. 2).

Effect of glucose metabolism in NSCLC
There is more and more evidence suggesting metabolic 
remodeling is activated deeply in carcinogenesis and 
malignant progression in lung cancer (LC) [23]. High 
glucose uptake is discovered in NSCLC via positron 
emission tomography/computed tomography (PET/
CT). Patients who has NSCLC with high glucose uptake 
can be identified with glucose-analog fluorodeoxyglu-
cose (18F-FDG) PET/CT scans, which is on the rise 
as a potential instrument to choose patients for meta-
bolically targeted anti-tumor treatment [24]. fLC tissue 

Fig. 2  Reprogramming the metabolic process of glucose in lung cancer. In addition to HIF-1α pathway，PPARy and PI3K/AKT/mTOR signaling 
impair the activity of enzymes and transporters limiting metabolic reprogramming in NSCLC. In the cell, glucose is transported by glucose 
transporters (GLUT)1 and 4. Glycolysis begins with the phosphorylation of glucose by hexokinase (HK). In the cycle of pentose phosphate (PPP), 
glucose-6-phosphate is converted into nucleosides and NADPH by glucose-6-phosphate dehydrogenase (G6PD). Dephosphorylating PEP is 
accomplished by pyruvate kinase (PK) at the end of the glycolytic pathway to synthesize pyruvate and ATP. After that, pyruvate is turned into lactate 
by-lactate dehydrogenase (LDH). Lactate is delivered to the outside of the cell by monocarboxylate transporters (MCT) 1 and 4. During metabolism, 
pyruvate can be converted into acetyl coenzyme A (acetyl-CoA), which is following used by the tricarboxylic acid cycle in mitochondria to give rise 
to ATP and intermediate molecules that are essential to the biosynthesis of both lipids and amino acids. Figure created using BioRe​nder.​com
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illustrates growing glucose contribution to tricarboxylic 
acid cycle (TCA) cycle in comparison with normal lung 
tissue, and lung cancer cells embody diverse glycolysis 
rates and mitochondrial abilities [25]. In addition, in LC 
cells, pyruvate carboxylase (PC) and pyruvate were over-
expressed compared to normal lung tissues. Even when 
tumor cells are cultured without glucose, activation of 
alternative pathways for phosphopentose (PPP) still acts 
a vital part in tumorigenesis [26]. Moreover, PPP activa-
tion can trigger a good deal of glutathione and nicotina-
mide adenine dinucleotide phosphate (NADPH), whose 
oxidase activity and expression are associated with malig-
nant biological behavior of LC. The function of inhibit-
ing NADPH oxidase downregulates the proliferation and 
invasion of LC [27, 28]. Thus, Lung cancer cells alter their 
metabolism by taking away glucose for energy produc-
tion through glycolysis, generating biomass through PPP 
and deprotonation, and counteracting oxidative stress 
through PPP.

Regulation of glucose transport and metabolism in NSCLC
There are two pathways of cellular glycolysis: oxygen-
dependent and oxygen-independent pathway. These two 
pathways both depend on some familiar glucose trans-
porters and glycolytic enzymes (Fig.  2). The oxygen-
dependent mechanisms are mediated by transcription 
factor hypoxia-inducible factor 1-alpha (HIF-1α) path-
way [29]. It has been shown that hypoxia promotes gly-
cogen accumulation in cells through HIF-1α stabilization 
[30]. The recent study showed DPT (Deoxypodophyl-
lotoxin) serves as an anticancer agent in NSCLC by sup-
pressing HIF-1α activation at the protein level in NSCLC 
cells to reduce glycolysis [31]. Another study demon-
strates that AC020978’s part in advancing cell growth and 
metabolic reprogramming in NSCLC, which uncovered 
that AC020978 could regulate PKM2-enhanced HIF-1α 
transcription activity [32].

Activation of the PI3K-AKT-mTOR signaling path-
way mainly mediates oxygen non-dependent mecha-
nisms of glucose utilization in LC [33, 34]. From a 
previous report,50–73% of NSCLC patients with poor 
prognosis exhibit high expression of AKT [35], while 
only minor patients with NSCLC embody mutations of 
PI3K and AKT.

Aside from activation of mutations, other mol-
ecules could also foster PI3K/AKT/MTOR signaling 
in LC. For instance, microRNA128 (Mir-128) plays an 
inhibitory role in LC progression by way of inhibition 
of AKT expression,thereby down-regulating glyco-
lysis [36]. However, some other molecules have been 
reported activate glycolysis metabolism of LC by tar-
geting PI3K/AKT pathway, such as oxidase 4 (NOX4) 
and α-enolase [37, 38].

Glucose transporters (GLUTs) belong to a protein 
family which is beneficial to the transferring of glucose 
into the blood. Several studies have shown that higher 
level of GLUT-1 protein was spotted to be remarkably 
connected with resistance to radiotherapy and poor 
disease particular overall survival of lung cancer [39, 
40]. However, another study performed by Osugi et al. 
indicated that NSCLC patients with GLUT-1 expres-
sion failed to independently display poorer overall 
survival in comparison to GLUT1-negative patients 
[41]. Furthermore, GLUT-4 was also identified to be an 
appropriate potential target for epigenetic treatment 
or metabolic targeting in the management and NSCLC 
therapy [42].

Hexokinase (HK) is the first rate-limiting enzyme when 
cells begin glycolysis. HK is composed of four isoforms 
featured with diverse functions along with cellular posi-
tions. HK-II serves as an enzyme which catalyzes the 
phosphorylation of glucose, and it is the first step of glyc-
olytic rate [43]. The expression levels of the HK-II protein 
in aggressive cancer cells greatly exceed those in normal 
cells [44]. Recently，supramolecular assemblies of new-
type amphiphilic cell-penetrating peptides in order to 
target cancer cell mitochondria stand for an emerging 
instrument for suppressing tumor growth. The adopted 
strategy is designed to amplify the apoptotic stimuli by 
impairing the mitochondrial VDAC1 (voltage-dependent 
anion channel-1)-hexokinase-II (HK-II) interaction [45].

NSCLC cells have overexpressed phosphofructoki-
nase (PFK) (Fig. 1) as well, driving glycolytic flux to grow. 
Among the members of PFKFB, PFKFB3 appears higher 
level of (740-fold) kinase activity and lesser level of bis-
phosphatase activity. Based on previous studies, PFKFB3 
was widely expressed in diverse organs and tumor cells, 
including lung, gastric, breast, ovarian, and thyroid car-
cinomas. It causes shifts in metabolism, giving rise to 
the proliferation and survival of tumor cells [46, 47]. A 
recent study also demonstrates that targeting PFKFB3 
restrained cell viability and glycolytic activity, which may 
be a promising therapeutic strategy in treating lung ade-
nocarcinoma [48]. Another PFK-1 family member, PFKP, 
was found to be up-regulated in both NSCLC tissues and 
cell lines and is correlated with lung cancer cell prolifera-
tion and patient prognosis [49].

The M2 isoform of pyruvate kinase (PKM2), as a glyco-
lytic terminal enzyme, catalyzes the last step of glycolysis, 
shifting the phosphate from phosphoenolpyruvate (PEP) 
to adenosine diphosphate (ADP) [43]. It has become a 
vital element that adjusts aerobic glycolysis in cancer 
cells [50]. The strategies of PKM2 inhibition or silenc-
ing [51] as well as activation [52, 53] have shared equal 
debates in literature owing to potential of treatment in 
limiting tumor growth.
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Gopinath Prakasam found that knockdown of AMPK 
in cells silenced for PKM2 or PKM1 took on inhibiting 
growth and contributed to apoptosis [54]. While another 
study carried out by Li.et al. showed that a potential 
PKM2 activator, 0089–0022, serves as a promising anti-
cancer therapy candidate in NSCLC [55].

Due to the Warburg effect, a large amount of lactic 
acid is synthesized from pyruvate [22]. Lactate gener-
ated by LDH is shifted by monocarboxylate anion trans-
porters (MCT) so that an alkaline internal environment 
is maintained. This will bring benefits to metabolism 
[56]. As is well-known to all that MCT4 transfers lactate 
out of the cell and MCT1 moves the entry of lactate to 
tumor cells [57]. A previous study had shown cellular 
expression levels of MCT1 and MCT4 were in relation 
to invasion activity. This suggests inhibitors of the MCT 
maybe offer a new-model strategy in order to hinder 
cancer metastasis [58].

In short, there is evidence demonstrates that LC 
employs HIF-1α to improve glycolytic flux and to neu-
tralize ROS via the upregulated activity of glucose 
importers (GLUT1, GLUT4), glycolytic enzymes (PFK, 
PK), and lactate transporters (MCT1, MCT4). Suppress-
ing metabolic enzymes activity involved in glycolysis and 
lactate production may become promising new alterna-
tive therapeutic targets for lung cancer. Up to date, the 
majority of prior available evidence was concentrated 
on small single studies, which only involve partly LC 
metabolism in a limited number of primary human LC 
cell lines. Before transforming into clinical trials, more 
comprehensive preclinical investigations on LC metabo-
lism in divergent phases of the disease are in demanded 
to enhance the effectiveness of these findings.

Impact of metabolism reprogramming 
on cells of the tumor microenvironment 
and immunotherapy in NSCLC
Glucose and glycolysis
The tumor microenvironment (TME) plays a vital role in 
tumor behavior and therapeutic effect [59]. Meanwhile, 
cancer cells can regulate a well-characterized metabolic 
phenotype that can deeply affect TME [60]. In addition, 
an emerging theme is that metabolic phenotypes are 
tissue specific and cancer subtype specific. As a highly 
heterogeneous disease covering a heterogeneous popu-
lation, NSCLC is blessed with a complicated system to 
identify the disease state and progression [61]. Tumor-
induced TME metabolic reprogramming as shown in 
Fig. 3 appears to be more common.

With the increase of metabolic activity of tumor cells, 
glucose and amino acids in tumor microenvironment 
were significantly deficient. Glucose utilization by tumors 
metabolically limits T cells, which paralyzes their ability 

to maintain aerobic glycolysis and anti-tumor activity 
[62–64]. This is partly attributed to T cells, like tumor 
cells, being metabolically dependent on glycolysis. Fur-
ther, T cell metabolism is regulated by HIF-1α, PPARy 
signaling and the transcription factor C-MYC-associated 
pathway and nuclear receptor family pathway [65, 66].

However, tumor-restricted glucose utilization would 
not totally make T cells disrupted, presumably because 
T cells seek for available metabolic sources. For 
example，mitochondrial activation of CD8 + T cells by 
PPAR-γ agonists strengthens the anti-tumor immunity 
in T cells during PD-1 blockade [66]. Another experi-
ment has demonstrated that reactivation of depleted T 
cells relies on reserve of lipids by fatty acid oxidation in T 
lymphocytes receiving PD-1 signals [67]. Thus, blocking 
these pathways with checkpoint inhibitors can partially 
rescue glycolysis and biosynthesis, thereby reversing the 
effector function of CD8 + T cells (Fig. 4).

On the basis of the previous studies, declining meta-
bolic burden on effector T cells, that lies in tumor micro-
environment, might cause durable and steady anti-tumor 
immune responses. For instance, inhibition of GLUT1 
receptors may contribute to more useful T cells and 
strengthen anti-tumor immune responses, or under the 
circumstance of glycolysis inhibitors like 2-deoxyglucose 
(2-DG), antitumor function can be enhanced in primed 
T cells [68, 69].However，several other studies have 
demonstrated that inhibiting nutrient transporters and 
enzymes got involved in glucose metabolism of CD8 + T 
cells could regulate T cell differentiation and inhibit 
CD8 + T cell function under low-glucose conditions [70].

The Treg cells accumulate in the TME and play a criti-
cal role in dampening antitumor effect. According to 
growing evidence, Tregs are able to differentitate and 
survive due to low glucose availability imposed by tumor 
condition. This extreme environment requires Tregs to 
utilize oxidative phosphorylation (OXPHOS) as a source 
of energy. In fact, lactate and kynurenin, metabolic waste 
products of glycolysis pathways, inhibit conventional 
T cell activation and cytotoxicity in Treg cells [71–73]. 
Reprogramming tumor cells, for example, inhibits the 
infiltration of effector T cells (Teffs) or induces apoptosis, 
enhances the differentiation of regulatory T cell (Tregs). 
As a result of reprogramming tumor cells, lactic acid 
accumulates and carbon dioxide is released, thereby sup-
pressing the immune system [74].

Contrary to CD8+ and CD4+ T cells, Treg metabo-
lism dependes on external factors which include nutrient 
availability as well as TCR triggering and cytokine milieu, 
[75, 76]. It is likely that Treg cells are not affected by glu-
cose competition in the tumor site because they are able 
to utilize alternative to glucose for energy [77]. Rather 
than glycolysis, the metabolism of Tregs is primarily 
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based on the oxidation of fatty acids [78, 79]. Tregs rely 
primarily on FAO for self-maintenance, and they exhibit 
low mTOR activity, so these fatty acids provide the per-
fect soil for Treg maintenance [80].

It has been demonstrated that fatty acids, combined 
with in  vitro inhibition of glucose uptake and glucose 
oxidation, lead to Treg differentiation [81]. Moreover, 
lipid uptake and oxidation are mandatory for the expres-
sion of Foxp3, as demonstrated in murine models [81]. In 
hypoxic tumors, hypoxia-inducible factor (HIF)-1* elicits 
pyruvate to exit mitochondria with OXPHOS, causing 

Tregs reliant upon fatty acids for mitochondrial metabo-
lism. As a result, FAO plays an important role in cancer 
metabolism of Tregs [82].

Effects of acidic extracellular microenvironment 
on immune cells
One main driving force of the metabolic remodeling 
appearing in the TME is without doubt rendered by 
hypoxia and accumulation of lactate. Lactate production 
is able to be higher level (40-fold) in tumor cells, and lac-
tate dehydrogenase (LDH) display a positive relationship 

Fig. 3  Aspects of glucose metabolism that may serve as therapeutic targets. A Cancer patients have successfully used immune-based 
interventions, including immune checkpoint inhibitors, to treat a variety of cancers. Low glucose, acidity and lactic acid in tumor microenvironment 
lead to enhanced expression of checkpoint receptors. In turn, this results in reduced glycosis and increased FAO, therefore causing 
immunosuppression. Immunotherapy targeted at these checkpoint receptors has been successful in restoring glycolysis to immune cells, which 
promotes anti-tumor immunity against tumors. B In the TME, increasing lactate promotes the survival of immune suppressive T cells and restraing 
the function of T effector. Lactate accumulation can be reduced by inhibiting lactate-producing enzymes, inhibiting lactate transporters or 
neutralizing acid-induced by lactic acid. These strategies have been proven effective in improving anti-tumor immunity. Figure created using BioRe​
nder.​com

http://biorender.com
http://biorender.com


Page 7 of 13Lv et al. Biomarker Research           (2022) 10:66 	

with tumor volume and clinical severity, as well as prog-
nosis [83, 84].

Table 1 summarizes the effects of tumor-derived lactic 
acid on tumor-infiltrating lymphocytes in TME.

As antigen presentation cells, tumor associated den-
dritic cells (TADCs) initiate and enhance antitumor 
immune responses. TADCs promote antitumor immune 
surveillance, as they are able to exhibit neoantigens to 
T cells, thereby initiating a T-cell-mediated immune 
response [85]. Studies have shown that lactic acid accu-
mulation has a direct immunosuppressive effect on 
immune cells. Lactic acid inhibits monocyte activation 
and dendritic cell antigen presentation [85, 86].

Myeloid-derived suppressor cells (MDSC) are key com-
ponents of protumor immune responses and their accu-
mulation in immune organs relate to immunosuppression 
and cancer aggressiveness. Tumoral lactate production 
was also found to increases MDSCs and suppresses natural 
killer (NK) cell function, further accelerating the immuno-
suppressive microenvironment [87]. A recent study con-
ducted by Baumann found that MDSC blocks T cells by 
transferring the glycolytic metabolite methylglyoxal, which 
acts as an immunosuppressant by consuming L-arginine in 
CD8+ T cells [88].

Tumor-associated macrophages (TAMs) serve as 
main components in TME [89].TAM, being highly plas-
tic, is able to polarize to two primary phenotypes: the 
antitumor M1 (TAM1) together with the protumor M2 
(TAM2). Several experiments and clinical trials dem-
onstrate that TAMs are primarily of the M2 phenotype, 
which drive tumor progression and metastasis [90, 91] 
as well as suppression of antitumor immune responses 
[92].

Tumor-cell-derived lactic acid facilitate M2-polariza-
tion of TAMs through improved arginase and HIF-1α 
stabilization [93, 94]. After we treated TAMs from 
patients either lactate or conditioned medium from two 

tumor cell lines: the Lewis lung carcinoma (LLC) and 
the melanoma cell lines, TAMs show enhanced expres-
sion of HIF-1α and M2-polarization [93].

Therefore, lactic acid produced by cancer cells has 
a direct immunosuppressive effect, further initiating 
MDSC-mediated immunosuppression and driving M2 
polarization by inhibiting the differentiation of mono-
cyte derived dendritic cells. Tumor-derived lactate can 
also decrease T cell function by reducing lactate export 
through MCT1, which inhibits their capability to retain 
aerobic glycolysis [95]. Additionally, inhibition of effec-
tor T cell and boost of Treg in TME by lactate lead to 
enhanced immunosuppressive microenvironment [96, 
97]. Hence, neutralization of an acidic environment is 
probably to have a significant implication on further 
the efficacy of ICB (Fig. 3).

Meanwhile, in a recent preclinical study, buffering the 
TME with bicarbonate administration able to limit tumor 
growth and improve antitumor responses in animals 
when merged with either anti-PD-1antibodies (Abs), 
anti-CTLA or adoptive T cell transfer in a melanoma 
model [98] .Although molecular mechanism underly-
ing this combination were not clear，these results imply 
that reversing the acidic TME may increase the selectiv-
ity of treatments and meanwhile improve ICB therapy by 
increasing tumor infiltration by activated T lymphocytes. 
Fig. 4.

Amino acids metabolism
NSCLC has metabolically increased dependence on glu-
cose and cystine or glutamine. Some amino acids have 
been studied as anti-cancer targets for drug discovery, 
involving glutamine and L-tryptophan.

Smoking induces the expression of cystine-glutamate 
antiporter xCT (SLC7A11) in NSCLC cells. Hence, one 
approach is to deprive cancer cells of up taking cystine by 
regulating glutaminolysis. Sulfasalazine (SASP), a FDA-
approved medication owns suppressive influence on the 
function of xCT, which inhibits cystine uptake and con-
tribute to cystine depletion [99, 100]. By reinforcing the 
correlation of xCT, the combination of tumor cell xCT 
deficiency with anti-CTLA, accelerated the frequencies 
and anti-tumor activity and persistence [101, 102].

An available strategy is to induce cancer cells glutamine 
deprivation by reducing glutamine uptake. CB-839 
(Telaglenestat) is one of the most effective and selec-
tive GSL1(glutaminase1) inhibitors. It has been shown 
to suppress growth in non-small-lung-cancer, synergize 
with immune checkpoint blockade Nivolumab or pem-
brolizumab [103].

Indoleamine-2,3-dioxygenase 1 (IDO1) catalyzes the 
conversion of tryptophan into kynurenine which lead to 

Table 1  The impacts of lactate and acidification on immune 
cells in the TME

Immune cells Effects

TADCs Inhibition monocyte activation [64]

Inhibition antigen presentation [65]

MDSCs Immunosuppressive microenvironment [66]

Cancer aggressiveness [66]

NK cells Inhibition of effector functions [66]

TAMs Induction of M2 polarization [72, 73]

Treg cells Increase in Treg proliferation [76]

Enhancement of immunosuppressive effect [76]

CD8 + T cells Inhibition of effector functions [74]
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an immune-suppressive TME and thus contributing to 
tumor growth [104]. Growing IDO1 activity prevents T 
effector activation,dampens NK cell function, facilitates 
Treg activation, and drives the expansion and activation 
of DCs and MDSCs [105, 106]. Accordingly, IDO is an 
appealing therapeutic target for anti-tumor drug discov-
ery. So, can we potentiate the efficacy of ICB for NSCLC 
patients by restoring TME tryptophan levels and inhib-
iting IDO1-dependent tryptophan metabolism? Several 
clinical trials have been investigating it and more com-
prehensive investigations are in needed. Epacadostat 
(Keynote-037) is one of the clinical-stage IDO1 inhibi-
tors (Table 1). Its combination with immune checkpoint 
inhibitor pembrolizumab yielded promising data in 
solid tumors (including NSCLC). However, in the phase 
III trial (KEYNOTE-252), Epacadostat failed to meet 
their endpoint in unresectable or metastatic melanoma 
[107, 108].

Meanwhile, several clinical trials are under way to test 
the combination of IDO1 inhibitor with antitumor vac-
cines. A phase I IDO-derived peptide vaccination study 

was performed in patients with stage III/IV NSCLC 
based on long-term follow up (NCT01219348). Here, 
we present the long-term clinical and immunological 
outcomes of the vaccine-based strategy [109, 110]. All 
these has prompted researchers to make breakthrough 
about IDO1 inhibition and inhibitory metabolites tryp-
tophan, thereby identifying patients candidates most 
susceptible to benefit from cancer immunotherapy.

Finally, Metformin, the old anti-diabetic drug, has 
also found its new place when combining with immu-
notherapy. According to studies in  vivo and in  vitro, 
targeting AMPK could be an meaningful strategy to 
augment immune checkpoint blockade efficiency. A 
phase II trial is evaluating the initial efficacy of met-
formin combined with nivolumab to treat metastatic 
lung cancer patients (NCT03048500).

Considering the metabolic interplay between cancer 
and immunes cells, the immune checkpoint blockade can 
synergize with metabolic intervention therapies. Table 2 
lists the tentative therapeutic targets that integrate 
metabolism with immunotherapy and will be further 

Fig. 4  The effects of lung cancer metabolism on immune cells within the tumor microenvironment (TME). Cancerous TME develop in lungs, lacking 
glucose and tryptophan, while immune-suppressive molecules such as lactate and kynurenine accumulate. In the tumor microenvironment, the 
high levels of lactate inhibit the tumor immune responses by (1) polarizing macrophages toward the suppressive M2 phenotypes, as well as (2) 
preventing monocyte migration and dendritic cell differentiation. (3) The presence of excessive lactate also inhibits the function of CD8+ T cell 
directly. Besides kynurenine, tumors are also known to repress T-cell activity, as is tumor-induced tryptophan deficiency and glucose deprivation. 
Figure created using BioRe​nder.​com
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discussed below. Table 3 lists novel metabolic reprogram-
ming immunotherapies that are in the preclinic.

Conclusion
TME consists of a variety of cell populations and matri-
ces, in which the bioenergetic requirements of quickly 
dividing cancer cells and immune cells are pitted against 
one another for essential nutrients. The metabolic repro-
gramming of lung cells is magnified by hypoxia, PPARy 
and PI3K/mTOR/AKT signaling-mediated overexpres-
sion of PPP, as well as glycolysis and lactate production 
as well.

Several immunotherapeutic options have been 
explored in recent decades in order to block or repro-
gram TAMs’ or MDSCs’ immunosuppressive activities. 
Many therapeutic strategies have utilized TAMs and 
M-MDSCs or their functional mediators as direct targets, 
including inhibiting CSF1 (M-CSF) interactions with its 
receptor CSF1R,by small molecules or neutralizing anti-
CSF1R (e.g., PLX3397, GW2580, IMC-CS4, AMG820) 
or anti-CSF1 (e.g., emactuzumab, cabiralizumab) mono-
clonal antibodies (mAbs), by blocking the production of 
anti-CSF1R or anti-CSF1 monoclonal antibodies, inhibit-
ing the M2-like phenotypes of TAMs, increasing infiltrat-
ing CD8+ T cells, and improving the immune response 
to ICB. The further investigation of synergistic effects of 
checkpoint blockade-based immunotherapies on TAMs 
or MDSCs will improve ongoing immunotherapeutics.

In addition to TAMs and MDSCs, DCs,as the most 
powerful antigen-presenting cells (APCs) of the immune 
system, also suffer from metabolic disorders. When DCs 
transition from an immature state to a mature state, 
they demonstrate metabolic plasticity. FAO drives ATP 
production in immature DCs via OXPHOS. Tumor-
associated DCs accumulate lipids, which are negative 
regulators of their ability to process antigens via MHC 
class II and to stimulate allogenic T cells. There is now a 
need for new studies to evaluate how anticancer therapies 

affect myelopoiesis and immunomodulation, as well as 
their interactions with metabolism in the host.

Energy and nutrients deprivation in the TME syn-
ergy with immune-suppressive molecules like lactic acid 
jointly promoting the suppressive TME. This further 
exacerbate immune escape. Strategies for combing ICB 
with LC metabolism meet the metabolic requirements 
of immune cells like M1 macrophages or CD8+ T cells, 
boosting anticancer immunity. Recently，clinical studies 
in relation to the integration of ICB with drugs tumor-
targeting are under way. IDO-inhibition could over-
come the detrimental effects of tryptophan depletion 
and kynurenine accumulation and balance tryptophan-
kynurenine pathway.

Simultaneous inhibition of glycolysis and lactic acid 
production in LC cells seems to be an effective method to 
improve the efficacy of immunotherapy. But so far, tumor 
targeting and localization targeting to protect non-can-
cer cells from glucose starvation still need to be further 
explored.

In a word, disrupting LC metabolism perhaps be a 
promising option to promote cancer immunotherapies. 
Novel therapeutic targets are under development in pre-
clinical models, at the same time, retooling existing drugs 
for optimized ICB should be investigated as well.

Table 2  Metabolic reprogramming in immunotherapy clinical trials

Medications Target Combination Therapy Context identifier/reference

Metformin AMPK Nivolumab (anti-PD1) NSCLC NCT03048500

epacadostat IDO Pembrolizumab NSCLC Keynote-037

epacadostat IDO Pembrolizumab + Platinum doublet NSCLC NCT03322566

epacadostat IDO Pembrolizumab NSCLC NCT03322540

IO102 IDO Pembrolizumab ± Platinum doublet NSCLC NCT T03562871

ID05-peptide IDO IDO vaccine-based NSCLC NCT01219348

Telaglenestat (CB-839) Glutaminase1 inhibitor Nivolumab NSCLC NCT02771626

(CB-839) Glutaminase pembrolizumab NSCLC NCT04265534

Table 3  Metabolic reprogramming immunotherapies in the 
preclinic

Inhibitors Targets Cancer types References

Dichloroacetic acid PDH breast cancer [111]

Dimethyl fumarate G6PD breast cancer [112]

L-Arg bacteria L-arginine Colon Cancer [113]

oxamate LDH lung cancer cells [114]

CB-839 Glutaminase Melanoma mouse [115]

Protein phosphatase 2A PPP SCLC [116]

AZD3965 MCT1 TC-1 cancer cells [117]
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